Skip to main content
Log in

Complexity and approximability of the Euclidean generalized traveling salesman problem in grid clusters

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

We consider the geometric version of the well-known Generalized Traveling Salesman Problem introduced in 2015 by Bhattacharya et al. that is called the Euclidean Generalized Traveling Salesman Problem in Grid Clusters (EGTSP-GC). They proved the intractability of the problem and proposed first polynomial time algorithms with fixed approximation factors. The extension of these results in the field of constructing the polynomial time approximation schemes (PTAS) and the description of non-trivial polynomial time solvable subclasses for the EGTSP-GC appear to be relevant in the light of the classic C. Papadimitriou result on the intractability of the Euclidean TSP and recent inapproximability results for the Traveling Salesman Problem with Neighborhoods (TSPN) in the case of discrete neighborhoods. In this paper, we propose Efficient Polynomial Time Approximation Schemes (EPTAS) for two special cases of the EGTSP-GC, when the number of clusters \(k=O(\log n)\) and \(k=n-O(\log n)\). Also, we show that any time, when one of the grid dimensions (height or width) is fixed, the EGTSP-GC can be solved to optimality in polynomial time. As a consequence, we specify a novel non-trivial polynomially solvable subclass of the Euclidean TSP in the plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arkin, E.M., Hassin, R.: Approximation algorithms for the geometric covering salesman problem. Discrete Appl. Math. 55(3), 197–218 (1994). https://doi.org/10.1016/0166-218X(94)90008-6

    Article  MathSciNet  MATH  Google Scholar 

  2. Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45(5), 753–782 (1998). https://doi.org/10.1145/290179.290180

    Article  MathSciNet  Google Scholar 

  3. Balas, E.: New classes of efficiently solvable generalized traveling salesman problems. Ann. Oper. Res. 86, 529–558 (1999)

    Article  MathSciNet  Google Scholar 

  4. Balas, E., Simonetti, N.: Linear time dynamic-programming algorithms for new classes of restricted TSPs: A computational study. INFORMS J. Comput. 13 (1), 56–75 (2001). https://doi.org/10.1287/ijoc.13.1.56.9748

    Article  MathSciNet  MATH  Google Scholar 

  5. Bhattacharya, B., Ćustić, A., Rafiey, A., Rafiey, A., Sokol, V.: Approximation Algorithms for Generalized MST and TSP in Grid Clusters, Lecture Notes in Computer Science, vol. 9486, pp 110–125. Springer International Publishing, Cham (2015)

    Chapter  Google Scholar 

  6. Chentsov, A., Khachay, M., Khachay, D.: Linear time algorithm for precedence constrained asymmetric generalized traveling salesman problem. IFAC-PapersOnLine 49 (12), 651–655 (2016). https://doi.org/10.1016/j.ifacol.2016.07.767, http://www.sciencedirect.com/science/article/pii/S2405896316310485. 8th IFAC Conference on Manufacturing Modelling, Management and Control MIM 2016

    Article  Google Scholar 

  7. Chentsov, A.G., Khachai, M.Y., Khachai, D.M.: An exact algorithm with linear complexity for a problem of visiting megalopolises. Proc. Steklov Instit. Math. 295(1), 38–46 (2016). https://doi.org/10.1134/S0081543816090054

    Article  MATH  Google Scholar 

  8. Cook, W.: Concorde TSP solver. http://www.math.uwaterloo.ca/tsp/con\discretionary-cor\discretionary-de.html (2003)

  9. Dror, M., Orlin, J.B.: Combinatorial optimization with explicit delineation of the ground set by a collection of subsets. SIAM J. Discret. Math. 21(4), 1019–1034 (2008). https://doi.org/10.1137/050636589

    Article  MathSciNet  MATH  Google Scholar 

  10. Dumitrescu, A., Mitchell, J.S.B.: Approximation algorithms for tsp with neighborhoods in the plane. In: Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’01, pp 38–46. Society for Industrial and Applied Mathematics, Philadelphia (2001). http://dl.acm.org/citation.cfm?id=365411.365417

  11. Dumitrescu, A., Tóth, C. D.: The traveling salesman problem for lines, balls, and planes. ACM Trans. Algor. 12(3), 43,1–43,29 (2016). https://doi.org/10.1145/2850418

    Article  MathSciNet  MATH  Google Scholar 

  12. Elbassioni, K., Fishkin, A., Sitters, R.: Approximation algorithms for the euclidean traveling salesman problem with discrete and continuous neighborhoods. Int. J. Comput. Geom. Appl. 19(2), 173–193 (2009). https://doi.org/10.1142/S0218195909002897

    Article  MathSciNet  MATH  Google Scholar 

  13. Feremans, C., Grigoriev, A., Sitters, R.: The geometric generalized minimum spanning tree problem with grid clustering. 4OR 4(4), 319–329 (2006). https://doi.org/10.1007/s10288-006-0012-6

    Article  MathSciNet  MATH  Google Scholar 

  14. Fischetti, M., González, J.J.S., Toth, P.: A branch-and-cut algorithm for the symmetric generalized traveling salesman problem. Oper. Res. 45(3), 378–394 (1997). https://doi.org/10.1287/opre.45.3.378

    Article  MathSciNet  MATH  Google Scholar 

  15. Gutin, G., Punnen, A.P.: The Traveling Salesman Problem and Its Variations. Springer, Boston (2007)

    Book  Google Scholar 

  16. Haimovich, M., Rinnooy Kan, A.H.G.: Bounds and heuristics for capacitated routing problems. Math. Oper. Res. 10(4), 527–542 (1985). https://doi.org/10.1287/moor.10.4.527

    Article  MathSciNet  MATH  Google Scholar 

  17. Khachai, M., Neznakhina, E.: A polynomial-time approximation scheme for the euclidean problem on a cycle cover of a graph. Proc. Steklov Instit. Math. 289(1), 111–125 (2015). https://doi.org/10.1134/S0081543815050107

    Article  MATH  Google Scholar 

  18. Khachai, M.Y., Neznakhina, E.D.: Approximation schemes for the generalized traveling salesman problem. Proc. Steklov Instit. Math. 299(1), 97–105 (2017). https://doi.org/10.1134/S0081543817090127

    Article  MathSciNet  MATH  Google Scholar 

  19. Khachay, M., Neznakhina, K.: Approximability of the minimum-weight k-size cycle cover problem. J. Glob. Optim. 66(1), 65–82 (2016). https://doi.org/10.1007/s10898-015-0391-3

    Article  MathSciNet  MATH  Google Scholar 

  20. Khachay, M., Neznakhina, K.: Polynomial Time Solvable Subclass of the Generalized Traveling Salesman Problem on Grid Clusters, Lecture Notes in Computer Science, vol. 10716, pp 346–355. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-73013-4_32

    Google Scholar 

  21. Khachay, M., Neznakhina, K.: Towards tractability of the Euclidean generalized traveling salesman problem in grid clusters defined by a grid of bounded height. In: Communications in Computer and Information Science, vol. 871, pp 68–77. Springer International Publishing, Cham (2018), https://doi.org/10.1007/978-3-319-93800-4_6

    Google Scholar 

  22. McQuarrie, A.D.R., Tsai, C.L.: Regression and Time Series Model Selection. World Scientific (1998)

  23. Mitchell, J.S.: Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric tsp, k-mst, and related problems. SIAM J. Comput. 28(4), 1298–1309 (1999). https://doi.org/10.1137/S0097539796309764

    Article  MathSciNet  MATH  Google Scholar 

  24. Mitchell, J.S.B.: A ptas for tsp with neighborhoods among fat regions in the plane. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07. http://dl.acm.org/citation.cfm?id=1283383.1283385, pp 11–18. Society for Industrial and Applied Mathematics, Philadelphia (2007)

  25. Papadimitriou, C.: Euclidean TSP is NP-complete. Theoret. Comput. Sci. 4, 237–244 (1977)

    Article  MathSciNet  Google Scholar 

  26. Weisberg, S.: Applied Linear Regression, 4 edn. Wiley (2013)

Download references

Acknowledgments

This research was supported by Russian Science Foundation, project no. 14-11-00109.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Khachay.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khachay, M., Neznakhina, K. Complexity and approximability of the Euclidean generalized traveling salesman problem in grid clusters. Ann Math Artif Intell 88, 53–69 (2020). https://doi.org/10.1007/s10472-019-09626-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-019-09626-w

Keywords

Mathematics Subject Classification (2010)

Navigation