Skip to main content

Advertisement

Log in

Olive Mill Wastewater Agronomic Valorization by its Spreading in Olive Grove

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Olive mill wastewater (OMW) is one of the main waste streams of olive processing and its disposal can represent a relevant environmental issue in Mediterranean countries. OMW is characterised by high pollutant load, salinity and phytotoxic levels of polyphenols, but also by a high amount of organic compounds and plant mineral nutrients. This study aimed to investigate the OMW reuse as a whole effluent for its soil conditioner and fertilizer potentialities in agriculture, in the frame work of circular economy.

Methods

For this purpose, OMW was applied at three doses (50, 100 and 200 m3 ha−1 year−1) over three successive years in olive field. Soil physico-chemical characteristics, enzymes activities and microbial properties, olive yield and olive oil quality were analysed.

Results

The findings revealed that the electrical conductivity, organic matter, total nitrogen, sodium, and potassium soil contents increased proportionally with OMW concentration and application frequency in the soil OMW-treated layers. Compared to their control soil counterparts, aerobic bacteria and fungi increased in proportion with the OMW spreading rates. Furthermore, all the soil enzyme activities tested (dehydrogenase, β-glucosidase and urease) were enhanced in the OMW-amended soils compared to the control. Vegetative activity and olive yield showed improvement according to the OMW level spread. With the only exception of the phenol content, which was significantly higher in the oils extracted from OMW treated olive trees than the control, the oil quality parameters did not show any significant difference.

Conclusions

OMW agronomic application constitutes a suitable practice to better manage this effluent, with positive effects on olive production and oil quality. Consequently, OMW could be considered as a useful and low cost fertilizer in olive orchard requiring the use of suitable doses especially in the Mediterranean area where this practice has been extended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

OMW:

Olive mill wastewater

FW:

Fresh weight

VOO:

Virgin olive oil

IOOC:

International Olive Oil Council

References

  1. Ben Rouina, B., Boukhris, M., Trigui, A.: Effect of the climate and the soil conditions on crops performance of the Chemlali de Sfax olive trees. Acta Hortic. 586, 285–289 (2002)

    Google Scholar 

  2. Tsadilas, C.D., Chartzoulakis, K.S.: Boron efficiency in olive trees in Greece in relation to soil Boron concentration. Proceedings of the Third International Symposium on Olive Growing. ISHS, volume: 341344 (1999)

  3. Jarboui, R., Sellami, F., Kharroubi, A., Azri, C., Gharsallah, N., Ammar, E.: Olive mill wastewater evaporation management using PCA method case study of natural degradation in stabilization ponds (Sfax, Tunisia). J. Hazard. Mater. 176, 992–1005 (2010)

    Google Scholar 

  4. Dermeche, S., Nadour, M., Larroche, C., Moulti-Mati, F., Michaud, P.: Olive mill wastes: Biochemical characterizations and valorization strategies, a review. Process Biochem. 48, 1532–1552 (2013)

    Google Scholar 

  5. Saadi, I., Laor, Y., Raviv, M., Medina, S.: Land spreading of olive mill wastewater: Effects on soil microbial activity and potential phytotoxicity. Chemosphere 66, 75–83 (2007)

    Google Scholar 

  6. Peri, C., Proietti, P.: Olive mill waste and by-products. In: Peri C. (ed.) The Extra-Virgin Olive Oil Handbook, 22, 283–302. Wiley, Chichester (2014)

    Google Scholar 

  7. Hachicha, S., Cegarra, J., Sellami, F., Hachicha, R., Drira, N., Medhioub, K., Ammar, E.: Elimination of polyphenols toxicity from olive mill wastewater sludge by its co-composting with sesame bark. J. Hazard. Mater. 161, 1131–1139 (2009)

    Google Scholar 

  8. Barbera, A.C., Maucieri, C., Cavallaro, V., Ioppolo, A., Spagna, G.: Effects of spreading olive mill wastewater on soil properties and crops, a review. Agric. Water Manag. 119, 43–53 (2013)

    Google Scholar 

  9. Piotrowska, A., Antonietta, M., Scotti, R., Gianfreda, L.: Changes in soil chemical and biochemical properties following amendment with crude and dephenolized olive mill waste water (OMW). Geoderma 161, 8–17 (2011)

    Google Scholar 

  10. Mechri, B., Issaoui, M., Echbili, A., Chehab, H., Mariem, F.B., Braham, M., Hammami, M.: Olive orchard amended with olive mill wastewater: effects on olive fruit and olive oil quality. J. Hazard. Mater. 172, 1544–1550 (2009)

    Google Scholar 

  11. Lozano-García, B., Parras-Alcántara, L., del Toro Carrillo de Albornoz, M.: Effects of oil mill wastes on surface soil properties, runoff and soil losses in traditional olive groves in southern Spain. Catena 85, 187–193 (2011)

    Google Scholar 

  12. Regni, L., Nasini, L., Ilarioni, L., Brunori, A., Massaccesi, L., Agnelli, A., Proietti, P.: Long term amendment with fresh and composted solid olive mill waste on olive grove affects carbon sequestration by prunings, fruits, and soil. Front. Plant Sci. 7: 2042. https://doi.org/10.3389/fpls.2016.02042 (2017)

  13. Regni, L., Gigliotti, G., Nasini, L., Proietti, P.: Reuse of olive mill waste as soil amendment. In: Galanakis C.M. (ed.) Olive Mill Waste: Recent Advances for Sustainable Management, 97–118. Publisher, Elsevier-Academic Press (2017)

    Google Scholar 

  14. Sierra, J., Marti, E., Garau, M.A., Cruaňas, R.: Effects of the agronomic use of olive oil mill wastewater: field experiment. Sci. Total Environ. 378, 90–94 (2007)

    Google Scholar 

  15. El Hassani, F.Z., Zinedine, A., Mdaghri Alaoui, S., Merzouki, M., Benlemlih, M.: Use of olive mill wastewater as an organic amendment for Mentha spicata L. Ind. Crops Prod. 32, 343–348 (2010)

    Google Scholar 

  16. Montemurro, F., Diacono, M., Vitti, C., Ferri, D.: Potential use of olive mille wastewater as amendment: crops yield and soil properties assessment. Commun. Soil Sci. Plant Anal. 42, 2594–2603 (2011)

    Google Scholar 

  17. Organisation Internationale de Normalisation, ISO 8358. Matières fertilisantes solides-Préparation des échantillons pour analyse chimique et physique. (1991)

  18. Nelson, D.W., Sommers, L.E.: Methods of Soil Analysis. Part 3, pp. 961–1010. Chemical methods, Madison (1996)

    Google Scholar 

  19. Box, J.D.: Investigation of the Folin–Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters. Wat. Res. 17, 511–522 (1983)

    Google Scholar 

  20. Olsen, S.R., Sommers, L.E.: Phosphorus. In: Page, A.L., Milller, R.H., Keeny, D.R. (eds.) Methods of soil Analysis, Part 2, pp. 403–430. American Society of Agronomy, Madison (1982)

    Google Scholar 

  21. Association Française de la Normalisation (AFNOR), Microbiologie des aliments-Dénombrement des levures et moisissures par comptage des colonies à 25 °C-Méthode de routine (NF V08-059). (1995)

  22. García, C., Hernández, T., Costa, F., Ceccanti, B., Masciandaro, G.: The dehydrogenase activity of soil as an ecological marker in processes of perturbed system regeneration. In: Gallardo-Lancho, J. (Ed.), In: Proceedings of the XI International Symposium of Environmental Biochemistry, Salamanca. pp. 89–100: (1993)

  23. Nannipieri, P., Ceccanti, B., Cervelli, S., Matarese, E.: Extraction of phosphatase, urease, protease, organic carbon and nitrogen from soil. Soil Sci. Soc. Am. J. 44, 1011–1016 (1980)

    Google Scholar 

  24. Tabatabai, M.A.: Soil enzymes. In: Page, A.L., Miller, E.M., Keeney D.R. (eds.) pp. 903–947. Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties. ASA, Madison (1982)

    Google Scholar 

  25. Conseil Oléicole International: Guide pour la détermination des caractéristiques des olives à huile. Norme COI/OH/DOC, no 1 (2011)

  26. European Union Commission. Regulation EEC 2568/91 on the characteristics of olive oils and their analytical methods. The Official Journal of the European Union 295/57-17/12/1991

  27. Vazquez Roncero, A., Janer del Valle, C., Janer del Valle, M.L.: Determination de polifenoles totales del aceite de oliva. Grasas Aceites 24, 350–357 (1973)

    Google Scholar 

  28. Singleton, V.L., Rossi, J.A.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 16, 144–158 (1965)

    Google Scholar 

  29. Conseil Oléicole International, Norme commerciale applicable aux huiles d’olive et aux huiles de grignons d’olive. Norme COI/T.15/NC No 3 (2015)

  30. Potenz, D., Rigetti, V., Valpolicella, M.: Effetto inquinante delle acque reflue della lavorazione delle olive su terreno agrario. Inquinamento 3, 65–68 (1980)

    Google Scholar 

  31. Chartzoulakis, K., Psarras, G., Moutsopoulou, M., Stefanoudaki, E.: Application of olive mill wastewater to a Cretan olive orchard: effects on soil properties, plant performance and the environment. Agric. Ecosyst. Environ. 138, 293–298 (2010)

    Google Scholar 

  32. Di Serio, M.G., Lanza, B., Mucciarella, M.R., Russi, F., Iannucci, E., Marfisi, P., Madeo, A.: Effects of olive mill wastewater spreading on the physico-chemical and microbiological characteristics of soil. Int. Biodeterior. Biodegrad. 62, 403–407 (2008)

    Google Scholar 

  33. Jarboui, R., Sellami, F., Kharroubi, A., Gharsallah, N., Ammar, E.: Olive mill wastewater stabilization in open air ponds: impact on clay–sandy soil. Bioresour. Technol. 99, 7699–7708 (2008)

    Google Scholar 

  34. Jarboui, R., Magdich, S., Jarboui., A.R., Gargouri, A., Gharsallah, N., Ammar, E.: Aspergillus niger P6 and Rhodotorula mucilaginosa CH4 used for olive mill wastewater (OMW) biological treatment in single pure and successive cultures. Environ. Technol. 34, 629–636 (2013)

    Google Scholar 

  35. Hachicha, S., Sellami, F., Medhioub, K., Hachicha, R., Ammar, E.: Quality assessment of composts prepared with olive mill wastewater and agricultural wastes. Waste Manag. 28, 2593–2603 (2008)

    Google Scholar 

  36. Belaqziz, M., El-Abbassi, A., Lakha, E., Agrafioti, E., Galanakis, C.M.: Agronomic application of olive mill wastewater: effects on maize production and soil properties. J. Environ. Manag. 171, 158–165 (2016)

    Google Scholar 

  37. Moraetis, D., Stamati, F.E., Nikolaidis, N.P., Kalogerakis, N.: Olive mill wastewater irrigation of maize: impacts on soil and groundwater. Agric. Water Manag. 98, 1125–1132 (2011)

    Google Scholar 

  38. Madejón, E., Burgos, P., López, R., Cabrera, F.: Agricultural use of three organic residues: effect on orange production on properties of a soil of the comarca costa de Huelva. Nutr. Cycl Agroecosyst. 65, 281–288 (2003)

    Google Scholar 

  39. Montemurro, F., Convertini, G., Ferri, D.: Mill waste water and olive pomace compost as amendments for rye-grass. Agronomie 24, 481–486 (2004)

    Google Scholar 

  40. Saviozzi, A., Levi-Minizi, R., Riffaldi, R., Lupetti, A.: Effetti dello spandimento di acque di vegetazione sul terreno agrario. Agrochimica 35, 135–148 (1991)

    Google Scholar 

  41. Matthies, C., Erhard, H.P., Drake, H.L.: Effects of pH on the comparative culturability of fungi and bacteria from acidic and less acidic forest soils. J. Basic Microbiol. 37, 335–343 (1997)

    Google Scholar 

  42. Amaral, C., Lucas, M.S., Coutinho, J., Crespei, A.L., Do Rosario Anjos, M., Pais, C.: Microbiological and physico-chemical characterization of olive mill wastewaters from a continuous olive mill in Northeastern Portugal. Bioresour. Technol. 99, 7215–7223 (2008)

    Google Scholar 

  43. Skopp, J., Jawson, M.D., Doran, J.W.: Steady-state aerobic microbial activity as a function of soil water content. Soil Sci. Soc. Am. J. 54, 1619–1625 (1990)

    Google Scholar 

  44. Tardioli, S., Bannè, E.T.G., Santori, F.: Species-specific selection on soil fungal population after olive mill waste-water treatment. Chemoshpere 34, 2329–2336 (1997)

    Google Scholar 

  45. Bodini, S.F., Cicalini, A.R., Santori, F.: Rhizosphere dynamics during phytoremediation of olive mill wastewater. Bioresour. Technol. 102, 4383–4389 (2011)

    Google Scholar 

  46. Moreno, B., Vivas, A., Nogales, R., Macci, C., Masciandaro, G., Benitez, E.: Restoring biochemical activity and bacterial diversity in a trichloroethylene contaminated soil: the reclamation effect of vermicomposted olive wastes. Environ. Sci. Pollut. Res. 16, 253–264 (2009)

    Google Scholar 

  47. Benitez, E., Melgar, R., Sainz, H., Gŏmez, M., Nogales, R.: Enzymes activities in rhizosphere of pepper (Capsicum annuun L.) grown with olive cake mulches. Soil Biol. Biochem. 32, 1829–1835 (2000)

    Google Scholar 

  48. López-Piñeiro, A., Albarrán, A., Rato Nunes, J.M., Peňa, A.D., Cabrera, D.: Long-term impacts of de-oiled two-phase olive mill waste on soil chemical properties, enzyme activities and productivity in an olive grove. Soil Till. Res. 114, 175–182 (2011)

    Google Scholar 

  49. Jorge-Mardomingo, I., Soler-Rovira, P., Ángel Casermeiro, M., Teresa de la Cruz, M., Polo, A.: Seasonal changes in microbial activity in a semiarid soil after application of a high dose of different organic amendments. Geoderma 206, 40–48 (2013)

    Google Scholar 

  50. Tabatabai, M.A.: Soil enzymes. In: Weaver R.W., Angel J.S., Bottomley P.S. (Eds.) Methods of Soil Analysis. Part 2: Microbial and Biochemical Properties, 775–833, Soil Science Society America, Madison (1994)

    Google Scholar 

  51. Stott, D.E., Andrews, S.S., Liebig, M.A., Wienhold, B.J., Karlen, D.L.: Evaluation of β-glucosidase activity as a soil quality indicator for the soil management. Soil Sci. Soc. Am. J. 74, 107–119 (2010)

    Google Scholar 

  52. Dick, R.P., Breakwell, D.P., Turco, R.F.: Soil enzyme activities and biodiversity measurements as integrative microbiological indicators, In: Doran J.W., Jones A.J. (eds.) Methods for Assessing Soil Quality Special Publication No. 49, 247–271, Soil Science Society America, Madison (1996)

    Google Scholar 

  53. Perucci, P.: Enzyme activity and microbial biomass in a field soil amended with municipal refuse. Biol. Fertil. Soils 14, 54–60 (1992)

    Google Scholar 

  54. Lagomarsino, A., Di Tizio, A., Marinari, S., Moscatelli, M.C., Mancinelli, R., Grego, S.: Soil organic matter pools under different system management and tillage level in a three-year crop rotation. Agrochimica 52, 395–406 (2008)

    Google Scholar 

  55. Moscatelli, M.C., Lagomarsino, A., Garzillo, A.M.V., Pignataro, A., Gregod, S.: Glucosidase kinetic parameters as indicators of soil quality under conventional and organic cropping systems applying two analytical approaches. Ecol. Indic. 13, 322–327 (2012)

    Google Scholar 

  56. Guo, H., Yao, J., Cai, M., Qian, Y., Guo, Y., Richnow, H.H., Blake, R.E., Doni, S.,. Ceccanti, B.: Effects of petroleum contamination on soil microbial numbers, metabolic activity and urease activity. Chemosphere 87, 1273–1280 (2012)

    Google Scholar 

  57. Munir, J.M.R., Ammar, A.A., Hanan, I.M.: Treated olive mill wastewater effects on soil properties and plant growth. Air Soil Pollut. 227, 135–145 (2016)

    Google Scholar 

  58. Altieri, R., Esposito, A.: Olive orchard amended with two experimental olive mill wastes mixtures: Effects on soil organic carbon, plant growth and yield. Bioresour. Technol. 99, 8390–8393 (2008)

    Google Scholar 

  59. Nasini, L., Gigliotti, G., Balduccini, M.A., Federici, E., Cenci, G., Proietti, P.: Effect of solid olive-mill waste amendment on soil fertility and olive (Olea europaea L.) tree activity. Agric. Ecosyst. Environ. 164, 292–297 (2013)

    Google Scholar 

  60. Ben Youssef, N., Youssef, B., Abaza, N., Naeit Mohamed, L., Debbech, S., Abdelly, N.: C.: Influence of the site of cultivation on Chétoui olive (Olea europaea L.) oil quality. Plant Prod. Sci. 15, 228–237 (2012)

    Google Scholar 

  61. Ayoub, S., Al-Absi, K., Al-Shdiefat, S., Al-Majali, D., Hijazean, D.: Effect of olive mill wastewater land-spreading on soil properties, olive tree performance and oil quality. Sci. Hortic. 175, 160–166 (2014)

    Google Scholar 

  62. Proietti, P., Federici, E., Fidati, L., Scargetta, S., Massaccesi, L., Nasini, L., Regni, L., Ricci, A., Cenci, G., Gigliotti, G.: Effects of amendment with oil mill waste and its derived-compost on soil chemical and microbiological characteristics and olive (Olea europaea L.) productivity. Agric. Ecosyst. Environ. 207, 51–60 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was carried out in the Olive Tree Institute of Tunisia. The facilities and services of the Institute are gratefully acknowledged. Funding was provided by Sfax University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emna Ammar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magdich, S., Rouina, B.B. & Ammar, E. Olive Mill Wastewater Agronomic Valorization by its Spreading in Olive Grove. Waste Biomass Valor 11, 1359–1372 (2020). https://doi.org/10.1007/s12649-018-0471-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0471-y

Keywords

Navigation