Skip to main content

Advertisement

Log in

Clinically Pertinent Manganese Oxide/Polyoxytyramine/Reduced Graphene Oxide Nanocomposite for Voltammetric Detection of Salivary and Urinary Arsenic

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Arsenic (AsIII), a notorious environmental hazard poses threat to the lives of several hundred million people. Notwithstanding radical developments of AsIII detection in water, a fast, simple and sensitive electrochemical process with lower detection limit for the quantification of AsIII in saliva and urine samples has scarcely ever been tried. Here, we have detected the poisoning due to AsIII in the saliva and urine samples of tobacco-chewers/smokers using a novel one-pot synthesized MnO2/polyoxytyramine/rGO nanocomposite. The composite was characterized by various analytical techniques such as UV–Vis. and FT-IR spectroscopic analyses, XRD, SEM, TEM, EDAX and elemental mapping analyses. The proposed AsIII quantification system has a wide linearity range (0.01–0.900 ppb) and the lowest detection limit (42 parts per trillion).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

References

  1. J. Barton, M. B. G. Garcia, D. H. Santos, P. Fanjul-Bolado, A. Ribotti, M. Mccaul, D. Diamond, and P. Magni (2016). Microchim. Acta183, (2), 503–517.

    Article  CAS  Google Scholar 

  2. B. Vellaichamy, P. Periakaruppan, and B. Nagulan (2017). ACS Sustain. Chem. Eng.5, 9313–9324.

    Article  CAS  Google Scholar 

  3. A. Karthika, S. Selvarajan, P. Karuppasamy, A. Suganthi, and M. Rajarajan (2019). J. Phys. Chem. Solids127, 11–18.

    Article  CAS  Google Scholar 

  4. S.-H. Wen, R.-P. Liang, H.-H. Zeng, L. Zhang, and J.-D. Qiu (2019). Microchim. Acta186, 45–55.

    Article  CAS  Google Scholar 

  5. G. Bombach, W. Klemm, and A. Greif (2019). Microchim. Acta151, 203–208.

    Article  CAS  Google Scholar 

  6. X. Ge, Y. Ma, X. Song, G. Wang, H. Zhang, Y. Zhang, and H. Zhao (2017). ACS Appl. Mater. Interfaces9, (15), 13480–13490.

    Article  CAS  PubMed  Google Scholar 

  7. J. Wang, S. Zhou, J. Huang, G. Zhaoa, and Y. Liu (2018). RSC Adv.8, 12222–12231.

    Article  CAS  Google Scholar 

  8. Z. L. Gong, X. Lu, M. S. Ma, C. Watt, and X. C. Le (2002). Talanta58, 77–96.

    Article  CAS  PubMed  Google Scholar 

  9. N. Zhang, N. Fu, Z. Fang, Y. Feng, and L. Ke (2011). Food Chem.124, 1185–1188.

    Article  CAS  Google Scholar 

  10. M. Welna, A. Szymczycha-Madeja, and P. Pohl (2013). Food Anal. Method7, 1016–1023.

    Article  Google Scholar 

  11. F. J. Pereira, M. D. Vazquez, L. Deban, and A. J. Aller (2015). Anal. Method7, 598–606.

    Article  CAS  Google Scholar 

  12. E. S. Forzani, K. Foley, P. Westerhoff, and N. Tao (2007). Sensor Sens. Actuators B123, 82–88.

    Article  CAS  Google Scholar 

  13. R. Sitko, P. Janik, B. Zawisza, E. Talik, E. Margui, and I. Queralt (2015). Anal. Chem.87, 3535–3542.

    Article  CAS  PubMed  Google Scholar 

  14. International Agency for Research on Cancer (2012). IARC monographs on the evaluation of carcinogenic risks to humans lyon, France 100 C, 36–93.

  15. H. Kaur, R. Kumar, J. N. Babu, and S. Mittal (2015). Biosens. Bioelectron.63, 533–545.

    Article  CAS  PubMed  Google Scholar 

  16. G. R. C. Almeida, C. U. Freitas, J. F. Barbosa, J. E. Tanus-Santos, and R. F. Gerlach (2009). Sci. Total Environ.407, 1547–1550.

    Article  CAS  Google Scholar 

  17. C. Yuan, X. Lu, N. Oro, Z. Wang, Y. Xia, T. J. Wade, J. Mumford, and X. C. Le (2008). Clin. Chem.54, (1), 163–171.

    Article  CAS  PubMed  Google Scholar 

  18. K. Lew, J. P. Acker, S. Gabos, and X. C. Le (2010). Environ. Sci. Technol.44, (10), 3986–3991.

    Article  CAS  PubMed  Google Scholar 

  19. D. Wang, Y. Shimoda, S. Wang, Z. Wang, J. Liu, X. Liu, H. Jin, F. Gao, J. Tong, K. Yamanaka, J. Zhang, and Y. An (2017). Environ. Health Prev. Med.22, 45–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. S. K. Ponnaiah, P. Periakaruppan, and B. Vellaichamy (2018). Ultrason. Sonochem.44, 196–203.

    Article  CAS  PubMed  Google Scholar 

  21. S. K. Ponnaiah, P. Periakaruppan, B. Vellaichamy, T. Paulmony, and R. Selvanathan (2018). Electrochim. Acta283, 914–921.

    Article  CAS  Google Scholar 

  22. T. Kajisa, W. Li, T. Michinobu, and T. Sakata (2018). Biosens. Bioelectron.117, 810–817.

    Article  CAS  PubMed  Google Scholar 

  23. S. Palanisamy, B. Thirumalraj, S.-M. Chen, Y.-T. Wang, V. Velusamy, and S. K. Ramaraj (2016). Sci. Rep.6, 33599–33608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. J. M. George, A. Antony, and B. Mathew (2018). Microchim. Acta185, 358.

    Article  CAS  Google Scholar 

  25. M. Khan, M. N. Tahir, S. F. Adil, H. U. Khan, M. R. H. Siddiqui, A. A. Al-warthan, and W. Tremel (2015). J. Mater. Chem. A3, 18753–18808.

    Article  CAS  Google Scholar 

  26. L. Zhang, Q. Chen, X. Han, and Q. Zhang (2018). J. Cluster Sci.29, (6), 1089–1098.

    Article  CAS  Google Scholar 

  27. A. Puangjan, S. Chaiyasith, S. Wichitpanya, S. Daengduang, and S. Puttota (2016). J. Electroanal. Chem.782, 192–201.

    Article  CAS  Google Scholar 

  28. X. Cui, X. Fang, H. Zhao, Z. Li, and H. Ren (2017). Anal. Methods9, 5322–5332.

    Article  CAS  Google Scholar 

  29. R. Zheng, S. Wang, Y. Tian, X. Jiang, D. Fu, S. Shen, and W. Yang (2015). ACS Appl. Mater. Interfaces7, (29), 15876–15884.

    Article  CAS  PubMed  Google Scholar 

  30. C. Wang, J. Bai, Y. Liu, X. Jia, and X. Jiang (2016). ACS Biomater. Sci. Eng.2, (11), 2011–2017.

    Article  CAS  Google Scholar 

  31. S. K. Ponnaiah, P. Periakaruppan, and S. Muthupandian (2019). Ultrason. Sonochem.58, 104629–104639.

    Article  CAS  PubMed  Google Scholar 

  32. S. K. Ponnaiah and P. Periakaruppan (2018). Microchim. Acta185, 524–531.

    Article  CAS  Google Scholar 

  33. P. Devi, C. Sharm, P. Kumar, M. Kumar, B. K. S. Bansod, M. K. Nayak, and M. L. Singla (2017). J. Hazard Mater.322, 85–94.

    Article  CAS  PubMed  Google Scholar 

  34. S. Sampath, M. O. Thotiyl, H. Basit, J. A. Sanchez, C. Goyer, L. Coche-Guerente, P. Dumy, P. Labbe, and J. C. Moutet (2012). J. Colloid Interface Sci.383, 130–139.

    Article  PubMed  CAS  Google Scholar 

  35. S. Kumar, G. Bhanjana, N. Dilbaghi, R. Kumar, and A. Umar (2016). Sens. Actuators B Chem.227, 29–34.

    Article  CAS  Google Scholar 

  36. K. B. Male, S. Hrapovic, J. M. Santini, and J. H. Luong (2007). Anal. Chem.79, 7831–7837.

    Article  CAS  PubMed  Google Scholar 

  37. M. Kremplova, L. Richtera, P. Kopel, R. Kensova, I. Blazkova, V. Milosavljevic, D. Hynek, V. Adam, and R. Kizek (2016). Int. J. Electrochem. Sci.11, 1213–1227.

    CAS  Google Scholar 

  38. M. R. Rahman, T. Okajima, and T. Ohsaka (2010). Anal. Chem.82, 9169–9176.

    Article  CAS  PubMed  Google Scholar 

  39. R. Gupta, J. S. Gamare, A. K. Pandey, D. Tyagi, and J. V. Kamat (2016). Anal. Chem.88, 2459–2465.

    Article  CAS  PubMed  Google Scholar 

  40. S. Prakash, T. Chakrabarty, A. K. Singh, and V. K. Shahi (2012). Electrochim. Acta72, 157–164.

    Article  CAS  Google Scholar 

  41. N. Moghimi, M. Mohapatra, and K. T. Leung (2015). Anal. Chem.87, (11), 5546–5552.

    Article  CAS  PubMed  Google Scholar 

  42. A. Salimi, H. Mamkhezri, R. Hallaj, and S. Soltanian (2008). Sens. Actuators B Chem.129, 246–254.

    Article  CAS  Google Scholar 

  43. S. Wu, Q. Zhao, L. Zhou, and Z. Zhang (2014). Electroanalysis26, 1840–1849.

    Article  CAS  Google Scholar 

  44. S. K. Ponnaiah, P. Periakaruppan, and B. Vellaichamy (2018). J. Phys. Chem. B122, 3037–3046.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The “Catalyzed and Financial support” by Tamilnadu State Council for Science and Technology, Department of Higher Education, Government of Tamilnadu, India for the award of research funding for research scholars (RFRS) scheme (TNSCST/RFRS/VR/07/2018-19) is very much acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Periakaruppan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 922 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponnaiah, S.K., Periakaruppan, P., Selvam, M. et al. Clinically Pertinent Manganese Oxide/Polyoxytyramine/Reduced Graphene Oxide Nanocomposite for Voltammetric Detection of Salivary and Urinary Arsenic. J Clust Sci 31, 877–885 (2020). https://doi.org/10.1007/s10876-019-01696-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01696-4

Keywords

Navigation