Skip to main content
Log in

dRRT*: Scalable and informed asymptotically-optimal multi-robot motion planning

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Many exciting robotic applications require multiple robots with many degrees of freedom, such as manipulators, to coordinate their motion in a shared workspace. Discovering high-quality paths in such scenarios can be achieved, in principle, by exploring the composite space of all robots. Sampling-based planners do so by building a roadmap or a tree data structure in the corresponding configuration space and can achieve asymptotic optimality. The hardness of motion planning, however, renders the explicit construction of such structures in the composite space of multiple robots impractical. This work proposes a scalable solution for such coupled multi-robot problems, which provides desirable path-quality guarantees and is also computationally efficient. In particular, the proposed \(\mathtt{dRRT^*}\) is an informed, asymptotically-optimal extension of a prior sampling-based multi-robot motion planner, \(\mathtt{dRRT}\). The prior approach introduced the idea of building roadmaps for each robot and implicitly searching the tensor product of these structures in the composite space. This work identifies the conditions for convergence to optimal paths in multi-robot problems, which the prior method was not achieving. Building on this analysis, \(\mathtt{dRRT}\) is first properly adapted so as to achieve the theoretical guarantees and then further extended so as to make use of effective heuristics when searching the composite space of all robots. The case where the various robots share some degrees of freedom is also studied. Evaluation in simulation indicates that the new algorithm, \(\mathtt{dRRT^*}\)  converges to high-quality paths quickly and scales to a higher number of robots where various alternatives fail. This work also demonstrates the planner’s capability to solve problems involving multiple real-world robotic arms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. Notice this difference from the original \(\mathtt{dRRT}\) (Solovey et al. 2015a) so as to allow edges where some robots remain motionless.

  2. In the graphs considered here, an edge exists between two nodes, if the nodes are separated by a distance less than the connection radius r(n).

  3. Let \(A_1,A_2\ldots \) be random variables in some probability space and let B be an event depending on \(A_n\). B occurs asymptotically almost surely (a.a.s.) if \(\lim \limits _{n\rightarrow \infty } \Pr [B(A_n)]=1\).

  4. The small-o notation o(1) indicates a function that becomes smaller than any positive constant and thereby asymptotically will become negligible. When this relation holds, the positive constant corresponds to \(\epsilon \).

References

  • Adler, A., De Berg, M., Halperin, D., & Solovey, K. (2015). Efficient multi-robot motion planning for unlabeled discs in simple polygons. In: IEEE transactions on automation science and engineering (Vol. 12, pp. 1309–1317). Springer. https://doi.org/10.1109/TASE.2015.2470096, arXiv:1312.1038.

  • Atias, A., Solovey, K., & Halperin, D. (2017). Effective metrics for multi-robot motion-planning. In: Proceedings of robotics: Science and systems, Cambridge, Massachusetts. https://doi.org/10.1177/0278364918784660, arXiv:1705.10300.

  • Bonilla, M., Pallottino, L., & Bicchi, A. (2017). Noninteracting constrained motion planning and control for robot manipulators. In: IEEE international conference on robotics and automation (pp. 4038–4043). https://doi.org/10.1109/ICRA.2017.7989463.

  • Caccavale, F., & Uchiyama, M. (2008). Cooperative manipulators. In B. Siciliano & O. Khatib (Eds.), Springer handbook of robotics (pp. 701–718). Berlin: Springer. https://doi.org/10.1007/978-3-540-30301-5_30.

    Chapter  Google Scholar 

  • Canny, J. F. (1988). The complexity of robot motion planning (Vol. Doctoral D). Cambridge: MIT Press. https://doi.org/10.1016/j.scriptamat.2009.11.029.

    Book  MATH  Google Scholar 

  • Cortés, J., & Siméon, T. (2005). Sampling-based motion planning under kinematic loop-closure constraints. In: Workshop on the algorithmic foundations of robotics (pp. 75–90). https://doi.org/10.1007/10991541_7.

  • Dobson, A., & Bekris, K. E. (2013). A study on the finite-time near-optimality properties of sampling-based motion planners. In: IEEE/RSJ international conference on intelligent robots and systems (pp. 1236–1241). https://doi.org/10.1109/IROS.2013.6696508.

  • Dobson, A., & Bekris, K. E. (2015). Planning representations and algorithms for prehensile multi-arm manipulation. In: IEEE/RSJ international conference on intelligent robots and systems (Vol. 2015-Decem, pp. 6381–6386). https://doi.org/10.1109/IROS.2015.7354289.

  • Dobson, A., Solovey, K., Shome, R., Halperin, D., & Bekris, K. E. (2017) Scalable asymptotically-optimal multi-robot motion planning. In: IEEE international symposium on multi-robot and multi-agent systems, Los Angeles, USA.

  • Dogar, M., Spielberg, A., Baker, S., & Rus, D. (2015). Multi-robot grasp planning for sequential assembly operations. In: IEEE international conference on robotics and automation (pp. 193–200).

  • Erdmann, M., & Lozano-Perez, T. (1987). On multiple moving objects. Algorithmica, 2(1–4), 477.

    Article  MathSciNet  Google Scholar 

  • Gammell, J. D., Srinivasa, S. S., & Barfoot, T. D. (2015) BIT *: batch informed trees for optimal sampling-based planning via dynamic programming on implicit random geometric graphs. In: IEEE international conference on robotics and automation (pp. 3067–3074). https://doi.org/10.1109/ICRA.2015.7139620, arXiv:1405.5848v1

  • Gharbi, M., Cortés, J., & Siméon, T. (2009). Roadmap composition for multi-arm systems path planning. In: IEEE/RSJ international conference on intelligent robots and systems (pp. 2471–2476). https://doi.org/10.1109/IROS.2009.5354415

  • Ghrist, R., O’Kane, J., & LaValle, S. (2005). Pareto optimal coordination on roadmaps. Algorithmic Foundations of Robotics VI, 24(1), 1–16.

    Google Scholar 

  • Gildardo, S. (2002). Using a PRM planner to compare centralized and decoupled planning for multi-robot systems. In: IEEE international conference on robotics and automation, May (pp. 2112–2119).

  • Gravot, F., & Alami, R. (2003a). A method for handling multiple roadmaps and its use for complex manipulation planning. In: IEEE international conference on robotics and automation (Cat. No.03CH37422) (Vol. 3, pp. 4–9). https://doi.org/10.1109/ROBOT.2003.1242038.

  • Gravot, F., & Alami, R. (2003b). A method for handling multiple roadmaps and its use for complex manipulation planning. In: IEEE international conference on robotics and automation (Cat. No. 03CH37422) (Vol. 3, pp. 4–9). https://doi.org/10.1109/ROBOT.2003.1242038.

  • Gravot, F., Alami, R., & Siméon, T. (2002). Playing with several roadmaps to solve manipulation problems. In: IEEE/RSJ international conference on intelligent robots and systems (Vol. 3, pp. 2311–2316). https://doi.org/10.1109/IRDS.2002.1041612.

  • Grinstead, C., & Snell, J. (2012). Introduction to probability. Providence, RI: American Mathmatical Society.

    MATH  Google Scholar 

  • Harada, K., Tsuji, T., & Laumond, J. P. (2014). A manipulation motion planner for dual-arm industrial manipulators. In: IEEE international conference on robotics and automation (pp. 928–934). https://doi.org/10.1109/ICRA.2014.6906965.

  • Hirsch, S., & Halperin, D. (2004). Hybrid motion planning: Coordinating two discs moving among polygonal obstacles in the plane. In: Springer tracts in advanced robotics, Springer (Vol. 7 STAR, pp. 239–255). https://doi.org/10.1007/978-3-540-45058-0_15.

  • Hopcroft, J. E., Schwartz, J. T., & Sharir, M. (1984). On the complexity of motion planning for multiple independent objects; PSPACE–hardness of the Warehousemans’ problem. International Journal of Robotics Research, 3(4), 76–88. https://doi.org/10.1177/027836498400300405.

    Article  Google Scholar 

  • Janson, L., Schmerling, E., Clark, A., & Pavone, M. (2015). Fast marching tree: A fast marching sampling-based method for optimal motion planning in many dimensions. International Journal of Robotics Research, 34(7), 883–921.

    Article  Google Scholar 

  • Johnson, D. B. (1977). Efficient algorithms for shortest paths in sparse networks. Journal of the ACM, 24(1), 1–13. https://doi.org/10.1145/321992.321993.

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson, J. K. (2018). On the relationship between dynamics and complexity in multi-agent collision avoidance. In: Autonomous robots, AnnArbor, Michigan (Vol. 42, pp. 1389–1404). https://doi.org/10.1007/s10514-018-9743-4.

  • Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. International Journal of Robotics Research, 30(7), 846–894. https://doi.org/10.1177/0278364911406761. arXiv:1105.1186.

    Article  MATH  Google Scholar 

  • Kavraki, L. E., Svestka, P., Latombe, J. C., & Overmars, M. H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), 566–580. https://doi.org/10.1109/70.508439.

    Article  Google Scholar 

  • Kloder, S., & Hutchinson, S. (2005). Path planning for permutation-invariant multi-robot formations. In: IEEE international conference on robotics and automation (pp. 1797–1802).

  • Koga, Y., & Latombe, J. C. (1994). On multi-arm manipulation planning. In: IEEE international conference on robotics and automation (Vol. 2, pp. 945–952). https://doi.org/10.1109/ROBOT.1994.351231.

  • Kornhauser, D., Miller, G., & Spirakis, P. (1984). Coordinating pebble motion on graphs, the diameter of permutation groups, and applications. In: 25th annual symposium onfoundations of computer science, 1984 (pp. 241–250). https://doi.org/10.1109/SFCS.1984.715921.

  • Krontiris, A., Shome, R., Dobson, A., Kimmel, A., & Bekris, K. (2015). Rearranging similar objects with a manipulator using pebble graphs. In: IEEE-RAS international conference on humanoid robots (Vol. 2015-Febru, pp 1081–1087). https://doi.org/10.1109/HUMANOIDS.2014.7041499.

  • LaValle, S., & Kuffner, J. (1999). Randomized kinodynamic planning. IEEE International Conference on Robotics and Automation, 20, 378–400.

    Google Scholar 

  • LaValle, S. M., & Hutchinson, S. A. (1998). Optimal motion planning for multiple robots having independent goals. IEEE Transactions on Robotics and Automation, 14(6), 912–925.

    Article  Google Scholar 

  • Lindemann, S. R., & LaValle, S. M. (2004). Incrementally reducing dispersion by increasing voronoi bias in rrts. In: IEEE international conference on robotics and automation (Vol. 4, pp. 3251–3257).

  • Luna, R., & Bekris, K. E. (2011). An efficient and complete approach for cooperative path-finding. In: Twenty-fifth AAAI conference on artificial intelligence (pp. 1804–1805).

  • O’Donnell, P. A., & Lozano-Pérez, T. (1989). Deadlock-free and collision-free coordination of two robot manipulators. In: International conference on robotics and automation (pp. 484–489). https://doi.org/10.1109/ROBOT.1989.100033.

  • Pelling, M. J. (1977). Formulae for the arc-length of a curve in \(\mathbb{R}^{N}\). In R. A. Brualdi (Ed.), The American Mathematical Monthly (Vol. 84(6), pp. 465–467). Madison, WI: Mathematical Association of America.

    MATH  Google Scholar 

  • Peng, J., & Akella, S. (2004). Coordinating multiple robots with kinodynamic constraints along specified paths. In J. D. Boissonat, J. Burdick, K. Goldberg, & S. Hutchinson (Eds.), Springer tracts in advanced robotics (Vol. 7 STAR, pp. 221–237). Berlin: Springer. https://doi.org/10.1007/978-3-540-45058-0_14.

    Chapter  Google Scholar 

  • Peng, J., & Akella, S. (2005). Multiple robots with kinodynamic constraints along specified paths. International Journal of Robotics Research, 24(4), 295–310. https://doi.org/10.1177/0278364905051974.

    Article  Google Scholar 

  • Salzman, O., Hemmer, M., & Halperin, D. (2015). On the power of manifold samples in exploring configuration spaces and the dimensionality of narrow passages. IEEE Transactions on Automation Science and Engineering, 12(2), 529–538. https://doi.org/10.1109/TASE.2014.2331983. arXiv:1202.5249.

    Article  Google Scholar 

  • Salzman, O., Solovey, K., & Halperin, D. (2016). Motion planning for multilink robots by implicit configuration-space tiling. IEEE Robotics and Automation Letters, 1(2), 760–767. https://doi.org/10.1109/LRA.2016.2524066. arXiv:1504.06631v3.

    Article  Google Scholar 

  • Schmerling, E., Janson, L., & Pavone, M. (2015a). Optimal sampling-based motion planning under differential constraints: The drift case with linear affine dynamics. In: IEEE conference on decision and control (Vol. 54rd IEEE, pp. 2574–2581). https://doi.org/10.1109/CDC.2015.7402604, arXiv:1405.7421.

  • Schmerling, E., Janson, L., & Pavone, M. (2015b). Optimal sampling-based motion planning under differential constraints: The drift case with linear affine dynamics. In: IEEE conference on decision and control (Vol. 54rd IEEE, pp. 2574–2581). https://doi.org/10.1109/CDC.2015.7402604, arXiv:1405.7421.

  • Shome, R., & Bekris, K. E. (2017) Improving the scalability of asymptotically optimal motion planning for humanoid dual-Arm manipulators. In: IEEE-RAS international conference on humanoid robots (pp. 271–277). https://doi.org/10.1109/HUMANOIDS.2017.8246885.

  • Shome, R., Solovey, K., Yu, J., Bekris, K., & Halperin, D. (2018). Fast, high-quality dual-arm rearrangement in synchronous, monotone tabletop setups. In: Workshop on the algorithmic foundation of robotics. arXiv:1810.12202v1.

  • Sina Mirrazavi Salehian, S., Figueroa, N., & Billard, A. (2016). Coordinated multi-arm motion planning: Reaching for moving objects in the face of uncertainty. In: Robotics: Science and systems XII. https://doi.org/10.15607/RSS.2016.XII.019.

  • Solovey, K., & Halperin, D. (2014). k-Color multi-robot motion planning. International Journal of Robotic Research, 33(1), 82–97.

    Article  Google Scholar 

  • Solovey, K., & Halperin, D. (2016). On the hardness of unlabeled multi-robot motion planning. International Journal of Robotics Research, 35(14), 1750–1759. https://doi.org/10.1177/0278364916672311. arXiv:1408.2260.

    Article  Google Scholar 

  • Solovey, K., Salzman, O., & Halperin, D. (2015a). Finding a needle in an exponential haystack: Discrete RRT for exploration of implicit roadmaps in multi-robot motion planning. International Journal of Robotics Research, 35(5), 501–513. https://doi.org/10.1177/0278364915615688. arXiv:1305.2889.

    Article  Google Scholar 

  • Solovey, K., Yu, J., Zamir, O., & Halperin, D. (2015b). Motion planning for unlabeled discs with optimality guarantees. In: Robotics: Science and systems. https://doi.org/10.15607/RSS.2015.XI.011, arXiv:1504.05218.

  • Spirakis, P., & Yap, C. K. (1984). Strong NP-hardness of moving many disks. Information Processing Letters, 19(1), 55–59.

    Article  MathSciNet  Google Scholar 

  • Svestka, P., & Overmars, M. H. (1998). Coordinated path planning for multiple robots. Robotics and Autonomous Systems, 23(3), 125–152.

    Article  Google Scholar 

  • Tang, S., & Kumar, V. (2015). A complete algorithm for generating safe trajectories for multi-robot teams. In: International symposium on robotics research, sestri levante, Italy (pp. 1–16). https://doi.org/10.1007/978-3-319-60916-4_34.

  • Turpin, M., Michael, N., & Kumar, V. (2013). Concurrent assignment and planning of trajectories for large teams of interchangeable robots. In: IEEE international conference on robotics and automation (Vol. 37, pp. 842–848). https://doi.org/10.1109/ICRA.2013.6630671.

  • Vahrenkamp, N., Berenson, D., Asfour, T., Kuffner, J., & Dillmann, R. (2009). Humanoid motion planning for dual-arm manipulation and re-grasping tasks. In: IEEE/RSJ international conference on intelligent robots and systems (pp. 2464–2470). https://doi.org/10.1109/IROS.2009.5354625.

  • Vahrenkamp, N., Kuhn, E., Asfour, T., & Dillmann, R. (2010). Planning multi-robot grasping motions. In: IEEE-RAS international conference on humanoid robots, humanoids (pp. 593–600). https://doi.org/10.1109/ICHR.2010.5686844.

  • Van Den Berg, J., Guy, S. J., Lin, M., Manocha, D., Pradalier, C., Siegwart, R., et al. (2011). Reciprocal n-Body collision avoidance, Springer tracts in advanced robotics (star ed., Vol. 70, pp. 3–19). Berlin: Springer.

    Google Scholar 

  • Van Den Berg, J., Snoeyink, J., Lin, M., & Manocha, D. (2009). Centralized path planning for multiple robots: Optimal decoupling into sequential plans. In: Robotics: Science and systems V. https://doi.org/10.15607/RSS.2009.V.018.

  • Van Den Berg, J. P., & Overmars, M. H. (2005). Prioritized motion planning for multiple robots. In: 2005 IEEE/RSJ international conference on intelligent robots and systems, IROS (pp. 2217–2222). https://doi.org/10.1109/IROS.2005.1545306.

  • Wagner, G., & Choset, H. (2013). Subdimensional expansion for multirobot path planning. Artificial Intelligence, 219, 1–46. https://doi.org/10.1016/j.artint.2014.11.001.

    Article  MathSciNet  MATH  Google Scholar 

  • Yu, J., & LaValle, S. M. (2013). Planning optimal paths for multi-agent systems on graphs. In: IEEE international conference on robotics and automation (pp. 3612–3617). https://doi.org/10.1109/ICRA.2013.6631084, arXiv:1204.3830v4.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas E. Bekris.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of the several papers published in Autonomous Robots comprising the Special Issue on Multi-Robot and Multi-Agent Systems.

A. Dobson, R. Shome and K. Bekris were supported by NSF IIS 1617744 and CCF 1330789.

K. Solovey and D. Halperin’s work has been supported in part by the Israel Science Foundation (Grant No. 825/15) and by the Blavatnik Computer Science Research Fund. Kiril Solovey has also been supported by the Clore Israel Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shome, R., Solovey, K., Dobson, A. et al. dRRT*: Scalable and informed asymptotically-optimal multi-robot motion planning. Auton Robot 44, 443–467 (2020). https://doi.org/10.1007/s10514-019-09832-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-019-09832-9

Keywords

Navigation