Skip to main content
Log in

Reliability assessment of display delamination considering adhesive properties based on statistical model calibration and validation

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

In this study, the delamination status of a display in response to a pad-drop impact is investigated using a computer simulation. Furthermore, reliability of display delamination and stress is assessed, considering the uncertainty factors such as material properties and noise that affect the degree of delamination. Considering that adhesive properties of optical clear adhesive are required to observe the degree of delamination, cohesive zone model is formed, and cohesive parameters are determined by comparing the results of peel test and finite element analysis. In this process, statistical model calibration and validation comprising three steps is employed: uncertainty propagation, statistical model calibration, and statistical model validation. The probability distributions of adhesive properties obtained by this model are compared with those obtained by a deterministic model. The result reveals that the statistical model calibration and validation decreases the cost while retaining the predictive capability. In addition, the reliability of display delamination is evaluated, considering the adhesive properties and the experimental conditions having uncertainties as variables. Based on the variables, the uncertainty of the response function is propagated, and the delamination probability is predicted. The study helps establish that the failure of display delamination in the case of a pad drop simulation can be predicted statistically through reliability assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • ABAQUS: User’s Guide, Version 2018. Dassault Systemes Simulia, Inc., Providence (2018)

    Google Scholar 

  • António, C.C., Hoffbauer, L.N.: Uncertainty propagation in inverse reliability-based design of composite structures Int. J. Mech. Mater. Des. 6, 89–102 (2010)

    Article  Google Scholar 

  • Blackman, B.R.K., Hadavinia, H., Kinloch, A.J., Williams, J.G.: The use of a cohesive zone model to study the fracture of fibre composites and adhesively-bonded joints. Int. J. Fract. 19, 25–46 (2003)

    Article  Google Scholar 

  • Chae, Y., Chae, G.S., Youn, Y.O., Woo, S., Shin, S.H., Lee, J.: Optimal design of thickness and Young’s modulus of multi-layered foldable structure considering bending stress, neutral plane and delamination under 2.5 mm radius of curvature. Int. J. Precis. Manuf. 19(8), 1143–1154 (2018)

    Article  Google Scholar 

  • Cui, S., Blackman, B.R.K., Kinloch, A.J., Talyor, A.: Duability of asphalt mixtures: effect of aggregate type and adhesion promoters. Int. J. Adhes. Adhes. 54, 100–111 (2014)

    Article  Google Scholar 

  • Dillard, D.A., Pocius, A.V.: The Mechanics of Adhesion. Elsevier, New York (2002)

    Google Scholar 

  • Doh, J., Lee, J., Ahn, H.S., Kim, S.W., Kim, S.H.: Reliability based design of the automotive components considering degradation properties of polymeric materials. Trans. KSAE 24(5), 596–604 (2016)

    Article  Google Scholar 

  • Ferson, S., Oberkampf, W.L., Ginzburg, L.: Model validation and predictive capability for the thermal challenge problem. Comput. Appl. Mech. Eng. 197, 2408–2430 (2008)

    Article  Google Scholar 

  • Fonseca, J.R., Friswell, M.I., Mottershead, J.E., Leesa, A.W.: Uncertainty identification by the maximum likelihood method. J. Sound Vib. 288, 587–599 (2005)

    Article  Google Scholar 

  • Georgiou, I., Hadavinia, H., Ivankovic, A., Kinloch, A.J., Tropsa, V., Williams, J.G.: Cohesive zone models and the plastically deforming peel test. J. Adhes. 79, 239–265 (2003)

    Article  Google Scholar 

  • Gorelchenko, P., Zhang, B., and Hu, G.: Cover glass behavior in handheld device drop: modeling; validation and design evaluation. In: ASTR (2016)

  • Jacobs, J.H., Etman, L.F.P., Keulen, F., Rooda, J.E.: Framework for sequential approximate optimization. Struct. Multidisc. Optim. 27, 384–400 (2004)

    Article  Google Scholar 

  • Jung, B.C., Park, J., Oh, H., Kim, J., Youn, B.D.: A framework of model validation and virtual product qualification with limited experimental data based on statistical inference. Struct. Multidisc. Optim. 51, 573–583 (2015)

    Article  Google Scholar 

  • Khuri, A.I., Mukhopadhyay, S.: Response surface methodology. Wiley Interdiscip. Rev. Comput. Stat. 2, 128–149 (2010)

    Article  Google Scholar 

  • Lee, C.C., Shih, Y.S., Wu, C.S., Tsai, C.H., Yeh, S.T., Peng, Y.H., Chen, K.J.: Development of robust flexible OLED encapsulations using simulated estimations and experimental validations. J. Phys. D Appl. Phys. 45, 275102 (2012)

    Article  Google Scholar 

  • Lee, C.J., Lee, S.K., Ko, D.C., Kim, B.M.: Evaluation of adhesive properties using cohesive zone model: mode I. Trans. KSME A 33(5), 474–481 (2009)

    Article  Google Scholar 

  • Liu, S., Wang, X., Ma, B., Gan, Z., Zhang, H.: Drop test and simulation of portable electronic devices. In: 2005 6th International Conference on Electronic Packaging Technology, vol. 6 (2005)

  • Liu, Y., Chen, W., Arendt, P., Huang, H.Z.: Toward a better understanding of model validation metrics. J. Mech. Des. 133, 071005 (2011)

    Article  Google Scholar 

  • Mohammed, I.K., Charalambides, M.N., Kinloch, A.J.: Modelling the interfacial peeling of pressure-sensitive adhesives. J. Nonlinear Fluid Mech. 222, 141–150 (2002)

    Article  MathSciNet  Google Scholar 

  • Moore, D.R., Williams, J.G.: A protocol for determination of the adhesive fracture toughness of flexible laminates by peel testing: fixed arm and T-peel methods. Comput. Struct. 183, 320–330 (2018)

    Article  Google Scholar 

  • Nguyen, K.-H., Ju, H.-W., Truong, V.-H., Kweon, J.-H.: Delamination analysis of multi-stage composite curved beam using an out-of-autoclave material. Compos. Struct. 183, 320–330 (2018)

    Article  Google Scholar 

  • Oberkampf, W.L., Trucano, T.G., Hirsch, C.: Verification, validation, and predictive capability in computational engineering and physics. Appl. Mech. Rev. 57, 345–384 (2004)

    Article  Google Scholar 

  • Rosa Paiva, M.M., António, C.C., da Silva Lucas, F.M.: Multiobjective optimization of mechanical properties based on the composition of adhesives. Int. J. Mech. Mater. Des. 13, 1–24 (2017)

    Article  Google Scholar 

  • Ramamurthi, M., Lee, J.S., Yang, S.H., Kim, Y.S.: Delamination characterization of bonded interface in polymer coated steel using surface based cohesive model. Int. J. Precis. Eng. Manuf. 14(10), 1755–1765 (2013)

    Article  Google Scholar 

  • Shin, C.M., Oh, H.C., Kim, K.Y., Cheong, N.R., Lee, B.C.: Numerical analysis of the ball drop test for the impact resistance properties of the high-hardness plastic cover. Proceedings of the Society of CAD/CAM Conference, pp. 163–169 (2013)

  • Thacker, B.H.: ASME Standards Committee on Verification and Validation in Computational Solid Mechanics. ASME, New York (2001)

    Google Scholar 

  • Youn, B.D., Jung, B.C., Xi, Z., Kim, S.B., Lee, W.R.: A hierarchical framework for statistical model calibration in engineering product development. Comput. Appl. Mech. Eng. 200, 1421–1431 (2011)

    Article  Google Scholar 

  • Yun, F., Tsai, C.C., Tsai, J.L.: Characterizing mechanical behaviors of a flexible AMOLED during the debonding process. Microsyst. Technol. 22, 2397–2406 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT & Future Planning (2017R1A2B4009606).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongsoo Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nah, J.S., Lee, J. Reliability assessment of display delamination considering adhesive properties based on statistical model calibration and validation. Int J Mech Mater Des 16, 191–206 (2020). https://doi.org/10.1007/s10999-019-09454-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-019-09454-0

Keywords

Navigation