Skip to main content
Log in

Fabrication and Characterization of Biodegradable pH-Responsive Halloysite Poly(lactic-co-glycolic acid) Micro-sphere for Controlled Released of Phenytoin Sodium

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this paper, new porous pH-responsive microspheres based on functionalized halloysite nanotubes (HNTs) with poly-lactic-co-glycolic acid (PLGA) are investigated as the phenytoin sodium (PHT-Na) carrier. For this purpose, the surfaces of HNTs were modified by a silane coupling agent, (3-aminopropyl)triethoxysilane (APTES) and then the desired microsphere was synthesized through PLGA coating on modified HNTs. Formation of these hybrid particles are confirmed using various characterization methods like Fourier transform infrared (FT-IR), transmission electron microscope (TEM), scanning electron microscope (SEM), EDX, zeta-potential, and X-ray diffraction. The results of the FT-IR spectrum show the presence of APTES, PHT-Na and PLGA peaks, which supported the modification of HNTs and drug capsulation. TEM images confirm the presence of APTES on HNTs, due to the increase in outer diameter. SEM images displayed that by grafting PLGA polymer to modified HNTs, the shape of nanotubes has changed from rod-like to microsphere. Hence, the prospering connection of APTES and PLGA on HNTs was emphasized by zeta-potential results. Moreover, the profile of drug release is recorded via HPLC. In vitro drug release tests show that both the presence of polymer chains around drug containers and the pH value of the release medium play an important role in controlled release. Eventually, the kinetics of drug release was evaluated based on Korsmeyer–Peppas kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Malleswari, R.B. Desi Reddy, C. Uma, G. Sailaja, World J. Pharm. Pharm. Sci. 7, 453 (2018)

    CAS  Google Scholar 

  2. G. Nahler, D. Brunier, A. Mollet, M. Nahler, T.D. Szucs, Dictionary of Pharmaceutical Medicine, 4th edn. (Springer, Vienna, 2017)

    Book  Google Scholar 

  3. K.A. Zahidah, S. Kakooei, M. Ismail, P. Bothi Raja, Prog. Org. Coat. 111, 175 (2017)

    Article  CAS  Google Scholar 

  4. R. Cheng, F. Meng, C. Deng, H.A. Klok, Z. Zhong, Biomaterials 34, 3647 (2013)

    Article  CAS  Google Scholar 

  5. R. Cavalli, M. Soster, M. Argenziano, Ther. Deliv. 7, 117 (2016)

    Article  CAS  Google Scholar 

  6. E. Joussein, S. Petit, J. Churchman, B. Theng, D. Righi, B. Delvaux, Clay Miner. 40, 383 (2005)

    Article  CAS  Google Scholar 

  7. H. Kang, X. Liu, S. Zhang, J. Li, RSC Adv. 7, 24140 (2017)

    Article  Google Scholar 

  8. V. Vergaro, E. Abdullayev, Y.M. Lvov, A. Zeitoun, R. Cingolani, R. Rinaldi, S. Leporatti, Biomacromolecules 11, 820 (2010)

    Article  CAS  Google Scholar 

  9. G. Cavallaro, G. Lazzara, S. Milioto, F. Parisi, Chem. Rec. 18, 940 (2018)

    Article  CAS  Google Scholar 

  10. S. Patel, U. Jammalamadaka, L. Sun, K. Tappa, D. Mills, Bioengineering 3, 1 (2016)

    Article  Google Scholar 

  11. L. Guo, S. Yan, Q. Li, Q. Xu, X. Lin, S.-S. Qi, S.-Q. Yu, S.-L. Chen, RSC Adv. 7, 42073 (2017)

    Article  CAS  Google Scholar 

  12. E. Abdullayev, Y. Lvov, P. Yuan, A. Thill, F. Bergaya, Developments in Clay Science, 1st edn. (Elsevier, Amsterdam, 2016)

    Google Scholar 

  13. H.K. Makadia, S.J. Siegel, Polymer 3, 1377 (2011)

    Article  CAS  Google Scholar 

  14. M. Mir, N. Ahmed, A.U. Rehman, Colloid Surf. B 159, 217 (2017)

    Article  CAS  Google Scholar 

  15. A. Varaprasad, N. Sriram, A. Godwin Isaac Blessing, M. Jawahar, S. Thangamuthu, Int. J. Biol. Pharm. Res. 3, 126 (2012)

    Google Scholar 

  16. N.R. Temkin, S.S. Dikmen, A.J. Wilensky, J. Keihm, S. Chabal, H.R. Winn, N. Engl. J. Med. 323, 497 (1990)

    Article  CAS  Google Scholar 

  17. N. Barkoula, B. Alcock, N.O. Cabrera, T. Peijs, Polym. Compos. 16, 101 (2008)

    Article  CAS  Google Scholar 

  18. A. Ghebaur, S.A. Garea, H. Iovu, Int. J. Pharm. 436, 568 (2012)

    Article  CAS  Google Scholar 

  19. Y.H. Alimohammadi, S.W. Joo, Asian Pac. J. Cancer Prev. 15, 517 (2014)

    Article  Google Scholar 

  20. M. Liu, Z. Jia, D. Jia, C. Zhou, Prog. Polym. Sci. 39, 1498 (2014)

    Article  CAS  Google Scholar 

  21. P. Yuan, P.D. Southon, Z. Liu, M. Green, J.M. Hook, S.J. Antill, C. Kepert, J. Phys. Chem. C 112, 15742 (2008)

    Article  CAS  Google Scholar 

  22. A. Silva, B. Cardoso, M. Silva, R. Freitas, R.G. Sousa, J. Biomater. Nanobiotechnol. 6, 12 (2015)

    Article  Google Scholar 

  23. D. Klose, F. Siepmann, K. Elkharraz, S. Krenzlin, J. Siepmann, Int. J. Pharm. 314, 198 (2006)

    Article  CAS  Google Scholar 

  24. H.J. Haroosh, Y. Dong, D.S. Chaudhary, G.D. Ingram, S.-I. Yusa, Appl. Phys. A 110, 433 (2013)

    Article  CAS  Google Scholar 

  25. S.R. Levis, P.B. Deasy, Int. J. Pharm. 243, 125 (2002)

    Article  CAS  Google Scholar 

  26. D. Tan, P. Yuan, F. Annabi-Bergaya, H. Yu, D. Liu, H. Liu, H. He, Microporous Mesoporous Mater. 179, 89 (2013)

    Article  CAS  Google Scholar 

  27. H. Lun, J. Ouyang, H. Yang, RSC Adv. 4, 44197 (2014)

    Article  CAS  Google Scholar 

  28. P. Pasbakhsh, G.J. Churchman, J.L. Keeling, Appl. Clay Sci. 74, 47 (2013)

    Article  CAS  Google Scholar 

  29. J.M. Chan, L. Zhang, K.P. Yuet, G. Liao, J.W. Rhee, R. Langer, O.C. Farokhzad, Biomaterials 30, 1627 (2009)

    Article  CAS  Google Scholar 

  30. P.L. Ritger, N.A. Peppas, J. Control. Release 5, 37–42 (1987)

    Article  CAS  Google Scholar 

  31. M.M. Ayad, N.A. Salahuddin, N.L. Torad, A.A. El-Nasr, RSC Adv. 6, 57929 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Kalaee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malakinezhad, H., Kalaee, M., Abdouss, M. et al. Fabrication and Characterization of Biodegradable pH-Responsive Halloysite Poly(lactic-co-glycolic acid) Micro-sphere for Controlled Released of Phenytoin Sodium. J Inorg Organomet Polym 30, 722–730 (2020). https://doi.org/10.1007/s10904-019-01263-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01263-4

Keywords

Navigation