Skip to main content

Advertisement

Log in

A Novel Approach of Curcumin Loaded Chitosan/Dextran Nanocomposite for the Management of Complicated Abdominal Wound Dehiscence

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In recent times, about 35% of patients suffered from post laparotomy wound dehiscence and the effective management of wound is highly inevitable. Natural polymers such as chitosan and dextran have excellent biodegradability and biocompatibility. These features make them an ideal candidate for biomedical applications. The present study is aimed to synthesize curcumin loaded chitosan/dextran nanocomposite and to evaluate its antibacterial and abdominal wound healing properties. The curcumin loaded chitosan/dextran nanocomposite was characterized by UV–vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Zeta potential. FTIR results inferred the strong interaction between the three components. The surface morphology of curcumin loaded chitosan/dextran nanocomposite was spherical shaped which are firmly anchored on the polymer matrix. TEM analysis also confirmed the formation of the composite. The XRD analysis confirmed the presence of crystalline material. The curcumin loaded chitosan/dextran nanocomposite recorded greater antibacterial effects on S. mutans and E. coli. The number of dead bacterial cells was significantly higher in curcumin loaded chitosan/dextran nanocomposite. Moreover, curcumin loaded chitosan/dextran nanocomposite stimulated the regeneration of new tissues and promoted the wound healing efficiency in the mouse. Therefore, the developed materials have a potential role as antimicrobial and abdominal wound healing in biomedical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. K. Singh, D. Rai, D. Yadav, A. Bhargava, J. Balzarini, and E. De Clercq (2010). Eur. J. Med. Chem.45, (3), 1078–1086.

    Article  CAS  PubMed  Google Scholar 

  2. Y. Wang, Z. Lu, H. Wu, and F. Lv (2009). Int. J. Food Microbiol.136, (1), 71–74.

    Article  CAS  PubMed  Google Scholar 

  3. M. Panchatcharam, S. Miriyala, V. S. Gayathri, and L. Suguna (2006). Mol. Cell. Biochem.290, (1–2), 87–96.

    Article  CAS  PubMed  Google Scholar 

  4. G. S. Sidhu, H. Mani, J. P. Gaddipati, A. K. Singh, P. Seth, K. K. Banaudha, G. K. Patnaik, and R. K. Maheshwari (1999). Wound Repair Regen.7, (5), 362–374.

    Article  CAS  PubMed  Google Scholar 

  5. H. F. Selig, D. B. Lumenta, M. Giretzlehner, M. G. Jeschke, D. Upton, and L. P. Kamolz (2012). Burns38, 960–966.

    Article  PubMed  Google Scholar 

  6. I. Tocco, B. Zavan, F. Bassetto, and V. Vindigni (2012). J. Nanomater.12, 1–11.

    Article  CAS  Google Scholar 

  7. A. Basu, K. R. Kunduru, E. Abtew, and A. J. Domb (2015). Bioconj. Chem.26, 1396–1412.

    Article  CAS  Google Scholar 

  8. V. M. Correlo, L. F. Boesel, M. Bhattacharya, J. F. Mano, N. M. Neves, and R. L. Reis (2005). Macromol. Mater. Eng.290, (12), 1157–1165.

    Article  CAS  Google Scholar 

  9. W. H. De Jong and P. J. Borm (2008). Int. J. Nanomed.3, (2), 133–149.

    Article  Google Scholar 

  10. A. Di Martino, M. Sittinger, and M. V. Risbud (2005). Biomaterials26, (30), 5983–5990.

    Article  PubMed  CAS  Google Scholar 

  11. B. G. Kozen, S. J. Kircher, J. Henao, F. S. Godinez, and A. S. Johnson (2008). Acad. Emerg. Med.15, (1), 74–81.

    Article  PubMed  Google Scholar 

  12. R. W. Millner, A. S. Lockhart, H. Bird, and C. Alexiou (2009). Ann. Thorac. Surg.87, (2), e13–e14.

    Article  PubMed  Google Scholar 

  13. H. Ueno, T. Mori, and T. Fujinaga (2001). Adv. Drug Deliv. Rev.52, (2), 105–115.

    Article  CAS  PubMed  Google Scholar 

  14. M. C. Robson (1997). Surg. Clin. North Am.77, (3), 637–650.

    Article  CAS  PubMed  Google Scholar 

  15. T. Dai, M. Tanaka, Y. Y. Huang, and M. R. Hamblin (2011). Expert Rev. Anti Infect. Ther.9, (7), 857–879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. T. C. Santos, A. P. Marques, S. S. Silva, J. M. Oliveira, J. F. Mano, A. G. Castro, A. G. Castro, and R. L. Reis (2007). J. Biotechnol.132, (2), 218–226.

    Article  CAS  PubMed  Google Scholar 

  17. H. Ueno, H. Yamada, I. Tanaka, N. Kaba, M. Matsuura, M. Okumura, M. Okumura, M. Okumura, T. Kadosawa, and T. Fujinaga (1999). Biomaterials20, (15), 1407–1414.

    Article  CAS  PubMed  Google Scholar 

  18. G. Peluso, O. Petillo, M. Ranieri, M. Santin, L. Ambrosio, D. Calabro, B. Avallone, and G. Balsamo (1994). Biomaterials15, (15), 1215–1220.

    Article  CAS  PubMed  Google Scholar 

  19. E. G. Nascimento, T. B. Sampaio, A. C. Medeiros, and E. P. Azevedo (2009). Acta Cir. Bras.24, (6), 460–465.

    Article  PubMed  Google Scholar 

  20. Z. Degim, N. Celebi, H. Sayan, A. Babul, D. Erdogan, and G. Take (2002). Amino Acids22, (2), 187–198.

    Article  CAS  PubMed  Google Scholar 

  21. P. M. Arockianathan, S. Sekar, B. Kumaran, and T. P. Sastry (2012). Int. J. Biol. Macromol.50, 939–946.

    Article  PubMed  CAS  Google Scholar 

  22. S. Shankar and J. Rhim (2018). Food Hydrocoll.82, 116–123.

    Article  CAS  Google Scholar 

  23. R. Mirnejad, M. Jahromi, M. Ali, S. Al-Musawi, M. Pirestani, M. Fasihi Ramandi, K. Ahmadi, H. Rajayi, Z. Mohammad Hassan, and M. Kamali (2014). Iran. J. Biotechnol.12, (3), e1012.

    Google Scholar 

  24. B. Maikozhundan and J. Vinodhini (2018). Mater. Today Commun.14, 106–115.

    Article  CAS  Google Scholar 

  25. S. Papadimitriou, D. Bikiaris, K. Avgoustakis, E. Karavas, and M. Georgarakis (2008). Carbohydr. Polymers73, (1), 44–54.

    Article  CAS  Google Scholar 

  26. A. W. Bauer, W. M. Kirby, J. C. Sherris, and M. Turck (1966). Am. J. Clin. Pathol.45, (4), 493–496.

    Article  CAS  PubMed  Google Scholar 

  27. B. Malaikozhundan, B. Vaseeharan, S. Vijayakumar, K. Pandiselvi, M. A. Kalanjiam, K. Murugan, and G. Benelli (2017). Microb. Pathog.104, 268–277.

    Article  CAS  PubMed  Google Scholar 

  28. A. S. Grijalva, R. H. Urbina, J. F. R. Silva, M. A. Borja, F. F. Barraza, and A. P. Amarillas (2005). Physica E25, 439.

    Google Scholar 

  29. H. Katas, Z. Hussain, and S. A. Awang (2013). J. Nanomater.2013, 1–9.

    Article  CAS  Google Scholar 

  30. K. Zak and D. Press (2011). Int. J. Nanomed.6, 1399–1403.

    Google Scholar 

  31. M. A. M. Jahromi, M. Karimi, K. Azadmanesh, H. N. Manesh, Z. M. Hassan, and S. M. Moazzeni (2014). Comp. Clin. Pathol.23, 1421–1427.

    Article  CAS  Google Scholar 

  32. R. K. Das, N. Kasoju, and U. Bora (2010). Nanomedicine6, (1), 153–160.

    Article  CAS  PubMed  Google Scholar 

  33. C. Kuo, C. Wang, H. Ko, W. Hwang, and K. Chang (2010). Ceram. Int.36, 693–698.

    Article  CAS  Google Scholar 

  34. Y. K. Kim and D. H. Min (2012). Carbon Lett.13, 29–33.

    Article  Google Scholar 

  35. S. B. Maddinedi, B. K. Mandal, S. H. Patil, V. V. Andhalkar, S. Ranjan, and N. Dasgupta (2017). J. Photochem. Photobiol. B Biol.166, 252–258.

    Article  CAS  Google Scholar 

  36. S. B. Maddinedi, J. Sonamuthu, S. S. Yildiz, G. Han, Y. Cai, J. Gao, Q. Ni, and J. Yao (2018). J. Photochem. Photobiol. B Biol.186, 189–196.

    Article  CAS  Google Scholar 

  37. J. Dobson (2006). GeneTherapy13, (4), 283–287.

    CAS  Google Scholar 

  38. T. M. Goppert and R. H. Muller (2005). Int. J. Pharm.302, 172–186.

    Article  CAS  PubMed  Google Scholar 

  39. S. Bansal and S. Chhibber (2010). J. Med. Microbiol.59, (4), 429–437.

    Article  CAS  PubMed  Google Scholar 

  40. J. Sonamuthu, S. Samayanan, A. R. Jeyaraman, B. Murugesan, B. Krishnan, and S. Mahalingam (2018). Mater. Sci. Eng. C84, 99–107.

    Article  CAS  Google Scholar 

  41. N. Pandiyan, B. Murugesan, J. Sonamuthu, S. Samayanan, and S. Mahalingam (2018). J. Photochem. Photobiol. B Biol.178, 481–488.

    Article  CAS  Google Scholar 

  42. P. Martin (1997). Science276, 75–81.

    Article  CAS  PubMed  Google Scholar 

  43. G. C. Gurtner, S. Werner, Y. Barrandon, et al. (2008). Nature453, 314–321.

    Article  CAS  PubMed  Google Scholar 

  44. S. Hamdan, I. Pastar, S. Drakulich, et al. (2017). ACS Cent. Sci.3, (3), 163–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. H. Nurhasni, J. F. Cao, M. Choi, et al. (2015). Int. J. Nanomed.10, 3065–3080.

    CAS  Google Scholar 

  46. M. Amidi, E. Mastrobattista, W. Jiskoot, and W. E. Hennink (2010). Adv. Drug Deliv. Rev.62, 59–82.

    Article  CAS  PubMed  Google Scholar 

  47. B. Nedelec, A. De Oliveira, M. Saint-Cyr, and D. R. Garrel (2007). Plast. Reconstr. Surg.119, 2101–2109.

    Article  CAS  PubMed  Google Scholar 

  48. E. J. Lee, B. K. Huh, S. N. Kim, J. Y. Lee, C. G. Park, A. G. Mikos, and Y. B. Choy (2017). Prog. Mater. Sci.89, 392–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. L. Shapiro, J.-L. Holste, T. Muench, and G. diZerega (2015). Int. J. Surg.22, 86–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Li or Jianhua Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Li, J., Yang, X. et al. A Novel Approach of Curcumin Loaded Chitosan/Dextran Nanocomposite for the Management of Complicated Abdominal Wound Dehiscence. J Clust Sci 31, 823–830 (2020). https://doi.org/10.1007/s10876-019-01689-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01689-3

Keywords

Navigation