Skip to main content

Advertisement

Log in

Optical coherence tomography angiography-derived flow density: a review of the influencing factors

  • Review Article
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Research interest in the possibility of quantifying macular and optic nerve head perfusion through optical coherence tomography angiography (OCTA) is rapidly advancing. Numerous scientific trials have furthered our understanding of the capabilities and the limitations of this novel technology, while applying OCTA to various ocular pathologies. In recent years, different parameters such as age, gender, intraocular pressure, spherical equivalent, physical activity, systemic diseases, and medication have been shown to have a significant impact on quantitative OCTA metrics. Since OCTA is likely to remain a “hot topic” in the near future, it is crucial to be aware of influencing factors in order to ensure correct interpretation of imaging results. This article reviews the factors currently known to influence flow density (FD) as measured by OCTA in healthy eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spaide RF, Klancnik JM, Cooney MJ (2015) Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 133(1):45–50. https://doi.org/10.1001/jamaophthalmol.2014.3616

    Article  PubMed  Google Scholar 

  2. Kim DY, Fingler J, Zawadzki RJ et al (2013) Optical imaging of the chorioretinal vasculature in the living human eye. Proc Natl Acad Sci 110:14354–14359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schwartz DM, Fingler J, Kim DY et al (2014) Phase-variance optical coherence tomography: a technique for noninvasive angiography. Ophthalmology 121:180–187. https://doi.org/10.1016/j.ophtha.2013.09.002

    Article  PubMed  Google Scholar 

  4. Tan ACS, Tan GS, Denniston AK et al (2018) An overview of the clinical applications of optical coherence tomography angiography. Eye (Lond) 32(2):262–286. https://doi.org/10.1038/eye.2017.181

    Article  CAS  Google Scholar 

  5. Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G (2018) Optical coherence tomography angiography. Prog Retin Eye Res 64:1–55. https://doi.org/10.1016/j.preteyeres.2017.11.003

    Article  PubMed  Google Scholar 

  6. Alnawaiseh M, Brand C, Bormann E, Sauerland C, Eter N (2018) Quantification of macular perfusion using optical coherence tomography angiography: repeatability and impact of an eye-tracking system. BMC Ophthalmol 18(1):123. https://doi.org/10.1186/s12886-018-0789-z

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lee MW, Kim KM, Lim HB, Jo YJ, Kim JY (2018) Repeatability of vessel density measurements using optical coherence tomography angiography in retinal diseases. Br J Ophthalmol. https://doi.org/10.1136/bjophthalmol-2018-312516

  8. Manalastas PIC, Zangwill LM, Saunders LJ et al (2017) Reproducibility of optical coherence tomography angiography macular and optic nerve head vascular density in glaucoma and healthy eyes. J Glaucoma 26(10):851–885. https://doi.org/10.1097/IJG.0000000000000768

    Article  PubMed  PubMed Central  Google Scholar 

  9. Quaranta-El Maftouhi M, El Maftouhi A, Eandi CM (2015) Chronic central serous chorioretinopathy imaged by optical coherence tomographic angiography. Am J Ophthalmol 160:581–587. https://doi.org/10.1016/j.ajo.2015.06.016

    Article  PubMed  Google Scholar 

  10. Jia Y, Bailey ST, Wilson DJ et al (2014) Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology 121:1435–1444. https://doi.org/10.1016/j.ophtha.2014.01.034

    Article  PubMed  Google Scholar 

  11. Powner MB, Sim DA, Zhu M et al (2016) Evaluation of nonperfused retinal vessels in ischemic retinopathy. Invest Ophthalmol Vis Sci 57:5031–5037. https://doi.org/10.1167/iovs.16-20007

    Article  CAS  PubMed  Google Scholar 

  12. Ishibazawa A, Nagaoka T, Takahashi A et al (2015) Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am J Ophthalmol 160, 35:–44.e1. https://doi.org/10.1016/j.ajo.2015.04.021

  13. Müller VC, Storp JJ, Kerschke L, Nelis P, Eter N, Alnawaiseh M (2019) Diurnal variations in flow density measured using optical coherence tomography angiography and the impact of heart rate, mean arterial pressure and intraocular pressure on flow density in primary open-angle glaucoma patients. Acta Ophthalmol. https://doi.org/10.1111/aos.14089

  14. Alnawaiseh M, Müller V, Lahme L, Merté RL, Eter N (2018) Changes in flow density measured using optical coherence tomography angiography after iStent insertion in combination with phacoemulsification in patients with open-angle glaucoma. J Ophthalmol 2018:2890357. https://doi.org/10.1155/2018/2890357

    Article  PubMed  PubMed Central  Google Scholar 

  15. Coscas F, Sellam A, Glacet-Bernard A, Jung C, Goudot M, Miere A, Souied EH (2016) Normative data for vascular density in superficial and deep capillary plexuses of healthy adults assessed by optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57(9):OCT211–OCT223. https://doi.org/10.1167/iovs.15-18793

    Article  PubMed  Google Scholar 

  16. Berrones D, Salcedo-Villanueva G, Morales-Cantón V, Velez-Montoya R (2017) Changes in retinal and choroidal vascular blood flow after oral sildenafil: an optical coherence tomography angiography study. J Ophthalmol 2017:7174540. https://doi.org/10.1155/2017/7174540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cohen SY, Miere A, Nghiem-Buffet S, Fajnkuchen F, Souied EH, Mrejen S (2018) Clinical applications of optical coherence tomography angiography: what we have learnt in the first 3 years. Eur J Ophthalmol 28(5):491–502. https://doi.org/10.1177/1120672117753704

    Article  PubMed  Google Scholar 

  18. Kashani AH, Chen CL, Gahm JK et al (2017) Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog Retin Eye Res 60:66–100. https://doi.org/10.1016/j.preteyeres.2017.07.002

    Article  PubMed  PubMed Central  Google Scholar 

  19. Alnawaiseh M, Lahme L, Eter N, Mardin C Optical coherence tomography angiography: value for glaucoma diagnostics. Ophthalmologe. https://doi.org/10.1007/s00347-018-0815-9

  20. Alnawaiseh M, Ertmer C, Seidel L et al (2018) Feasibility of optical coherence tomography angiography to assess changes in retinal microcirculation in ovine haemorrhagic shock. Crit Care 22(1):138. https://doi.org/10.1186/s13054-018-2056-3

    Article  PubMed  PubMed Central  Google Scholar 

  21. Alnawaiseh M, Schubert F, Heiduschka P, Eter N (2017) Optical coherence tomography angiography in patients with retinitis pigmentosa. Retina. https://doi.org/10.1097/IAE.0000000000001904

  22. Nelis P, Kleffner I, Burg MC et al (2018) OCT—angiography reveals reduced vessel density in the deep retinal plexus of CADASIL patients. Sci Rep 8(1):8148. https://doi.org/10.1038/s41598-018-26475-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alnawaiseh M, Rosentreter A, Hillmann A et al (2016) OCT angiography in the mouse: a novel evaluation method for vascular pathologies of the mouse retina. Exp Eye Res 145:417–423. https://doi.org/10.1016/j.exer.2016.02.012

    Article  CAS  PubMed  Google Scholar 

  24. Brand C, Zitzmann M, Eter N, Kliesch S, Wistuba J, Alnawaiseh M, Heiduschka P (2017) Aberrant ocular architecture and function in patients with Klinefelter syndrome. Sci Rep 7(1):13130. https://doi.org/10.1038/s41598-017-13528-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Treder M, Lauermann JL, Alnawaiseh M, Heiduschka P, Eter N (2018) Quantitative changes in flow density in patients with adult-onset foveomacular vitelliform dystrophy: an OCT angiography study. Graefes Arch Clin Exp Ophthalmol 256(1):23–28. https://doi.org/10.1007/s00417-017-3815-6

    Article  PubMed  Google Scholar 

  26. Alnawaiseh M, Lahme L, Treder M, Rosentreter A, Eter N (2017) Short-term effects of exercise on optic nerve and macular perfusion measured by optical coherence tomography angiography. Retina 37(9):1642–1646. https://doi.org/10.1097/IAE.0000000000001419

    Article  PubMed  Google Scholar 

  27. Alnawaiseh M, Schubert F, Nelis P, Wirths G, Rosentreter A, Eter N (2016) Optical coherence tomography (OCT) angiography findings in retinal arterial macroaneurysms. BMC Ophthalmol 16:120. https://doi.org/10.1186/s12886-016-0293-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Al-Sheikh M, Phasukkijwatana N, Dolz-Marco R et al (2017) OCT angiography of the retinal microvasculature and the choriocapillaris in myopic eyes. Invest Ophthalmol Vis Sci 58(4):2063–2069. https://doi.org/10.1167/iovs.16-21289

    Article  PubMed  Google Scholar 

  29. Suwan Y, Fard MA, Geyman LS, Tantraworasin A, Chui TY, Rosen RB, Ritch R (2018) Association of myopia with peripapillary perfused capillary density in patients with glaucoma: an optical coherence tomography angiography study. JAMA Ophthalmol 136(5):507–513. https://doi.org/10.1001/jamaophthalmol.2018.0776

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hassan M, Sadiq MA, Halim MS et al (2017) Evaluation of macular and peripapillary vessel flow density in eyes with no known pathology using optical coherence tomography angiography. Int J Retina Vitreous 3:27. https://doi.org/10.1186/s40942-017-0080-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li M, Yang Y, Jiang H et al (2017) Retinal microvascular network and microcirculation assessments in high myopia. Am J Ophthalmol 174:56–67. https://doi.org/10.1016/j.ajo.2016.10.018

    Article  PubMed  Google Scholar 

  32. Milani P, Montesano G, Rossetti L, Bergamini F, Pece A (2018) Vessel density, retinal thickness, and choriocapillaris vascular flow in myopic eyes on OCT angiography. Graefes Arch Clin Exp Ophthalmol 256(8):1419–1427. https://doi.org/10.1007/s00417-018-4012-y

    Article  PubMed  Google Scholar 

  33. Leng Y, Tam EK, Falavarjani KG, Tsui I (2018) Effect of age and myopia on retinal microvasculature. Ophthalmic Surg Lasers Imaging Retina 49(12):925–931. https://doi.org/10.3928/23258160-20181203-03

    Article  PubMed  Google Scholar 

  34. Cheung CY, Li J, Yuan N (2018) Quantitative retinal microvasculature in children using swept-source optical coherence tomography: the Hong Kong Children Eye Study. Br J Ophthalmol. https://doi.org/10.1136/bjophthalmol-2018-312413

  35. Wen C, Pei C, Xu X, Lei J (2019) Influence of axial length on parafoveal and peripapillary metrics from swept source optical coherence tomography angiography. Curr Eye Res 17:1–7. https://doi.org/10.1080/02713683.2019.1607393

    Article  CAS  Google Scholar 

  36. Bennett AG, Rudnicka AR, Edgar DF (1994) Improvements on Littmann’s method of determining the size of retinal features by fundus photography. Graefes Arch Clin Exp Ophthalmol 232:361–367

    Article  CAS  PubMed  Google Scholar 

  37. Wang Q, Chan S, Yang JY et al (2016) Vascular density in retina and choriocapillaris as measured by optical coherence tomography angiography. Am J Ophthalmol 168:95–109. https://doi.org/10.1016/j.ajo.2016.05.005

    Article  PubMed  Google Scholar 

  38. Zhang Z, Huang X, Meng X, Chen T, Gu Y, Wu Y, Wu Z (2017) In vivo assessment of macula in eyes of healthy children 8 to 16 years old using optical coherence tomography angiography. Sci Rep. https://doi.org/10.1038/s41598-017-08174-9

  39. Falavarjani KG, Shenazandi H, Naseri D et al (2018) Foveal avascular zone and vessel density in healthy subjects: an optical coherence tomography angiography study. J Ophthalmic Vis Res 13(3):260–265. https://doi.org/10.4103/jovr.jovr_173_17

    Article  PubMed  PubMed Central  Google Scholar 

  40. Oh J, Baik DJ, Ahn J (2018) Inter-relationship between retinal and choroidal vasculatures using optical coherence tomography angiography in normal eyes. Eur J Ophthalmol. https://doi.org/10.1177/2F1120672118816225

  41. Yu J, Gu R, Zong Y et al (2016) Relationship between retinal perfusion and retinal thickness in healthy subjects: an optical coherence tomography angiography study. Invest Ophthalmol Vis Sci 57(9):OCT204–OCT210. https://doi.org/10.1167/iovs.15-18630

    Article  PubMed  PubMed Central  Google Scholar 

  42. Patel N, McAllister F, Pardon L, Harwerth R (2018) The effects of graded intraocular pressure challenge on the optic nerve head. Exp Eye Res 169:79–90. https://doi.org/10.1016/j.exer.2018.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang Q, Jonas JB, Wang Q, Chan SY, Xu L, Wei WB, Wang YX (2018) Optical coherence tomography angiography vessel density changes after acute intraocular pressure elevation. Sci Rep 8(1):6024. https://doi.org/10.1038/s41598-018-24520-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mansouri K, Rao HL, Hoskens K, D’Alessandro E, Flores-Reyes EM, Mermoud A, Weinreb RN (2018) Diurnal variations of peripapillary and macular vessel density in glaucomatous eyes using optical coherence tomography angiography. J Glaucoma 27(4):336–341. https://doi.org/10.1097/IJG.0000000000000914

    Article  PubMed  Google Scholar 

  45. Holló G (2017) Influence of large intraocular pressure reduction on peripapillary OCT vessel density in ocular hypertensive and glaucoma eyes. J Glaucoma 26(1):e7–e10. https://doi.org/10.1097/IJG.0000000000000527

    Article  PubMed  Google Scholar 

  46. Yu S, Frueh BE, Steinmair D, Ebneter A, Wolf S, Zinkernagel MS, Munk MR (2018) Cataract significantly influences quantitative measurements on swept-source optical coherence tomography angiography imaging. PLoS One 13(10):e0204501. https://doi.org/10.1371/journal.pone.0204501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tan CS, Lim LW, Ting DS (2018) Changes in retinal vasculature after phacoemulsification evaluated using optical coherence tomography angiography. J Cataract Refract Surg 44(10):1297–1298. https://doi.org/10.1016/j.jcrs.2018.07.014

    Article  PubMed  Google Scholar 

  48. Zhao Z, Wen W, Jiang C, Lu Y (2018) Changes in macular vasculature after uncomplicated phacoemulsification surgery: optical coherence tomography angiography study. J Cataract Refract Surg 44(4):453–458. https://doi.org/10.1016/j.jcrs.2018.02.014

    Article  PubMed  Google Scholar 

  49. Kaur S, Singh SR, Sukhija J, Dogra MR (2018) Comparison of quantitative measurement of foveal avascular zone and macular vessel density in eyes of children with amblyopia and healthy controls: an optical coherence tomography angiography study. J AAPOS 22(2):164–165. https://doi.org/10.1016/j.jaapos.2017.06.026

    Article  PubMed  Google Scholar 

  50. Guo L, Tao J, Xia F, Yang Z, Ma X, Hua R (2016) In vivo optical imaging of amblyopia: digital subtraction autofluorescence and split-spectrum amplitude-decorrelation angiography. Lasers Surg Med 48(7):660–667. https://doi.org/10.1002/lsm.22520

    Article  PubMed  Google Scholar 

  51. Yilmaz I, Ocak OB, Yilmaz BS, Inal A, Gokyigit B, Taskapili M (2017) Comparison of quantitative measurement of foveal avascular zone and macular vessel density in eyes of children with amblyopia and healthy controls: an optical coherence tomography angiography study. J AAPOS 21(3):224–228. https://doi.org/10.1016/j.jaapos.2017.05.002

    Article  PubMed  Google Scholar 

  52. Sobral I, Rodrigues TM, Soares M, Seara M, Monteiro M, Paiva C, Castela R (2018) OCT angiography findings in children with amblyopia. J AAPOS 22(4):286–289.e2. https://doi.org/10.1016/j.jaapos.2018.03.009

    Article  PubMed  Google Scholar 

  53. Lonngi M, Velez FG, Tsui I et al (2017) Spectral-domain optical coherence tomographic angiography in children with amblyopia. JAMA Ophthalmol 135(10):1086–1091. https://doi.org/10.1001/jamaophthalmol.2017.3423

    Article  PubMed  PubMed Central  Google Scholar 

  54. Demirayak B, Vural A, Onur IU, Kaya FS, Yigit FU (2018) Analysis of macular vessel density and foveal avascular zone using spectral-domain optical coherence tomography angiography in children with amblyopia. J Pediatr Ophthalmol Strabismus 56(1):55–59. https://doi.org/10.3928/01913913-20181003-02

    Article  PubMed  Google Scholar 

  55. Borrelli E, Lonngi M, Balasubramanian S et al (2018) Increased choriocapillaris vessel density in amblyopic children: a case-control study. J AAPOS 22(5):366–370. https://doi.org/10.1016/j.jaapos.2018.04.005

    Article  PubMed  Google Scholar 

  56. Lim HB, Kim YW, Kim JM, Jo YJ, Kim JY (2018) The importance of signal strength in quantitative assessment of retinal vessel density using optical coherence tomography angiography. Sci Rep 8:12897. https://doi.org/10.1038/s41598-018-31321-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ravalico G, Toffoli G, Pastori G, Crocè M, Calderini S (1996) Age-related ocular blood flow changes. Invest Ophthalmol Vis Sci 37(13):2645–2650

    CAS  PubMed  Google Scholar 

  58. Alnawaiseh M, Brand C, Lauermann JL, Eter N (2018) Flow density measurements using optical coherence tomography angiography: Impact of age and gender. Ophthalmologe 115(8):659–662. https://doi.org/10.1007/s00347-017-0539-2

    Article  CAS  PubMed  Google Scholar 

  59. Nassisi M, Baghdasaryan E, Tepelus T, Asanad S, Borrelli E, Sadda SR (2018) Topographic distribution of choriocapillaris flow deficits in healthy eyes. PLoS One 13(11):e0207638. https://doi.org/10.1371/journal.pone.0207638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sacconi R, Borrelli E, Corbelli E et al (2018) Quantitative changes in the ageing choriocapillaris as measured by swept source optical coherence tomography angiography. Br J Ophthalmol. https://doi.org/10.1136/bjophthalmol-2018-313004

  61. Iafe NA, Phasukkijwatana N, Chen X, Sarraf D (2016) Retinal capillary density and foveal avascular zone area are age-dependent: quantitative analysis using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57(13):5780–5787. https://doi.org/10.1167/iovs.16-20045

    Article  CAS  PubMed  Google Scholar 

  62. Pinhas A, Linderman R, Mo S et al (2018) A method for age-matched OCT angiography deviation mapping in the assessment of disease- related changes to the radial peripapillary capillaries. PloS One 13(5):e0197062. https://doi.org/10.1371/journal.pone.0197062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shahlaee A, Samara WA, Hsu J et al (2016) In vivo assessment of macular vascular density in healthy human eyes using optical coherence tomography angiography. Am J Ophthalmol 165:39–46. https://doi.org/10.1016/j.ajo.2016.02.018

    Article  PubMed  Google Scholar 

  64. Wei Y, Jiang H, Shi Y et al (2017) Age-related alterations in the retinal microvasculature, microcirculation, and microstructure. Invest Ophthalmol Vis Sci 58(9):3804–3817. https://doi.org/10.1167/iovs.17-21460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rao HL, Pradhan ZS, Weinreb RN et al (2017) Determinants of peripapillary and macular vessel densities measured by optical coherence tomography angiography in normal eyes. J Glaucoma 26(5):491–497. https://doi.org/10.1097/IJG.0000000000000655

    Article  PubMed  Google Scholar 

  66. Lavia C, Bonnin S, Maule M, Erginay A, Tadayoni R, Gaudric A (2018) Vessel density of superficial, intermediate, and deep capillary plexuses using optical coherence tomography angiography. Retina 39(2):247–258. https://doi.org/10.1097/IAE.0000000000002413

    Article  PubMed Central  Google Scholar 

  67. Bazvand F, Mirshahi R, Fadakar K, Faghihi H, Sabour S, Ghassemi F (2017) The quantitative measurements of vascular density and flow area of optic nerve head using optical coherence tomography angiography. J Glaucoma 26(8):735–741. https://doi.org/10.1097/IJG.0000000000000722

    Article  PubMed  Google Scholar 

  68. Yu J, Jiang C, Wang X et al (2015) Macular perfusion in healthy Chinese: an optical coherence tomography angiogram study. Invest Ophthalmol Vis Sci 56(5):3212–3217. https://doi.org/10.1167/iovs.14-16270

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gadde SG, Anegondi N, Bhanushali D, Chidambar L, Yadav NK, Khurana A, Sinha Roy A (2016) Quantification of vessel density in retinal optical coherence tomography angiography images using local fractal dimension. Invest Ophthalmol Vis Sci 57(1):246–252. https://doi.org/10.1167/iovs.15-18287

    Article  CAS  PubMed  Google Scholar 

  70. Zhou M, Lu B, Zhang P, Zhao J, Wang Q, Sun X (2017) Determination of topographic variations in inner retinal blood flow areas in young Chinese subjects using optical coherence tomography angiography. Curr Eye Res 42(11):149. https://doi.org/10.1080/02713683.2016.1266662

    Article  Google Scholar 

  71. Schmitz B, Nelis P, Rolfes F et al (2018) Effects of high-intensity interval training on optic nerve head and macular perfusion using optical coherence tomography angiography in healthy adults. Atherosclerosis 274:8–15. https://doi.org/10.1016/j.atherosclerosis.2018.04.028

    Article  CAS  PubMed  Google Scholar 

  72. Ayhan Z, Kaya M, Ozturk T, Karti O, Hakan Oner F (2017) Evaluation of macular perfusion in healthy smokers by using optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retina 48(8):617–622. https://doi.org/10.3928/23258160-20170802-03

    Article  PubMed  Google Scholar 

  73. Holló G (2018) No acute effect of smoking on peripapillary and macular vessel density in healthy middle-aged smokers. J Glaucoma. https://doi.org/10.1097/IJG.0000000000001171

  74. Karti O, Zengin MO, Kerci SG, Ayhan Z, Kusbeci T (2018) Acute effect of caffeine on macular microcirculation in healthy subjects: an optical coherence tomography angiography study. Retina. https://doi.org/10.1097/IAE.0000000000002058

  75. Serafini S, Lohmann CP, Ulbig M (2019) A young patient with full visual acuity, small visual field defects, and normal fluorescence angiogram. Ophthalmologe 116:176. https://doi.org/10.1007/s00347-018-0733-x

    Article  CAS  PubMed  Google Scholar 

  76. Goker YS, Ucgul Atılgan C, Tekin K (2019) The validity of optical coherence tomography angiography as a screening test for the early detection of retinal changes in patients with hydroxychloroquine therapy. Curr Eye Res 44(3):311–315. https://doi.org/10.1080/02713683.2018.1545912

    Article  CAS  PubMed  Google Scholar 

  77. Ozek D, Onen M, Karaca EE, Omma A, Kemer OE, Coskun C (2018) The optical coherence tomography angiography findings of rheumatoid arthritis patients taking hydroxychloroquine. Eur J Ophthalmol 19:1120672118801125. https://doi.org/10.1177/1120672118801125

    Article  Google Scholar 

  78. Bulut M, Akıdan M, Gözkaya O, Erol MK, Cengiz A, Çay HF (2018) Optical coherence tomography angiography for screening of hydroxychloroquine-induced retinal alterations. Graefes Arch Clin Exp Ophthalmol 256(11):2075–2081. https://doi.org/10.1007/s00417-018-4117-3

    Article  CAS  PubMed  Google Scholar 

  79. Glossmann H, Petrischor G, Bartsch G (1999) Molecular mechanisms of the effects of sildenafil (VIAGRA®). Exp Gerontol 34(3):305–318. https://doi.org/10.1016/s0531-5565(99)00003-0

    Article  CAS  PubMed  Google Scholar 

  80. Chihara E, Dimitrova G, Chihara T (2018) Increase in the OCT angiographic peripapillary vessel density by ROCK inhibitor ripasudil instillation: a comparison with brimonidine. Graefes Arch Clin Exp Ophthalmol 256(7):1257–1264. https://doi.org/10.1007/s00417-018-3945-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cheng J, Yu J, Jiang C, Sun X (2017) Phenylephrine affects peripapillary retinal vasculature—an optic coherence tomography angiography study. Front Physiol 4:8–996. https://doi.org/10.3389/fphys.2017.00996

    Article  Google Scholar 

  82. Zong Y, Xu H, Yu J, Jiang C, Kong X, He Y, Sun X (2017) Retinal vascular autoregulation during phase IV of the Valsalva maneuver: an optical coherence tomography angiography study in healthy Chinese adults. Front Physiol 8:553. https://doi.org/10.3389/fphys.2017.00553

    Article  PubMed  PubMed Central  Google Scholar 

  83. Chua J, Chin CWL, Hong J et al (2019) Impact of hypertension on retinal capillary microvasculature using optical coherence tomographic angiography. J Hypertens 37(3):572–580. https://doi.org/10.1097/HJH.0000000000001916

    Article  CAS  PubMed  Google Scholar 

  84. Rotsos T, Andreanos K, Blounas S, Brouzas D, Ladas DS, Ladas ID (2017) Multimodal imaging of hypertensive chorioretinopathy by swept-source optical coherence tomography and optical coherence tomography angiography: case report. Medicine (Baltimore) 96(39):e8110. https://doi.org/10.1097/MD.0000000000008110

    Article  Google Scholar 

  85. Lim HB, Lee MW, Park JH, Kim KM, Jo YJ, Kim JY (2019) Changes in ganglion cell-inner plexiform layer thickness and retinal microvasculature in hypertension: an OCT angiography study. Am J Ophthalmol 119:167–176. https://doi.org/10.1016/j.ajo.2018.11.016

    Article  Google Scholar 

  86. Arnould L, Guenancia C, Azemar A et al (2018) The EYE-MI pilot study: a prospective acute coronary syndrome cohort evaluated with retinal optical coherence tomography angiography. Invest Ophthalmol Vis Sci 59(10):4299–4306. https://doi.org/10.1167/iovs.18-24090

    Article  CAS  PubMed  Google Scholar 

  87. Takayama K, Kaneko H, Ito Y et al (2018) Novel classification of early-stage systemic hypertensive changes in human retina based on OCTA measurement of choriocapillaris. Sci Rep 8(1):15163. https://doi.org/10.1038/s41598-018-33580-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Saito M, Ishibazawa A, Kinouchi R, Yoshida A (2018) Reperfusion of the choriocapillaris observed using optical coherence tomography angiography in hypertensive choroidopathy. Int Ophthalmol 38(5):2205–2210. https://doi.org/10.1007/s10792-017-0705-1

    Article  PubMed  Google Scholar 

  89. Nesper PL, Simjanoski E, Mirza RG (2016) Retinal macroaneurysm in long-standing hypertension. Opthalmology 123(11):2327. https://doi.org/10.1016/j.ophtha.2016.05.024

    Article  Google Scholar 

  90. Spaide (2016) Choriocapillaris flow features follow a power law distribution: implications for characterization and mechanisms of disease progression. Am J Ophthalmol 170:58–67. https://doi.org/10.1016/j.ajo.2016.07.023

  91. Lahme L, Marchiori E, Panuccio G et al (2018) Changes in retinal flow density measured by optical coherence tomography angiography in patients with carotid artery stenosis after carotid endarterectomy. Sci Rep 8(1):17161. https://doi.org/10.1038/s41598-018-35556-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pechauer AD, Jia Y, Liu L, Gao SS, Jiang C, Huang D (2015) Optical coherence tomography angiography of peripapillary retinal blood flow response to hyperoxia. Invest Ophthalmol Vis Sci 56(5):3287–3291. https://doi.org/10.1167/iovs.15-16655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Xu H, Deng G, Jiang C, Kong X, Yu J, Sun X (2016) Microcirculatory responses to hyperoxia in macular and peripapillary regions. Invest Ophthalmol Vis Sci 57(10):4464–4468. https://doi.org/10.1167/iovs.16-19603

    Article  CAS  PubMed  Google Scholar 

  94. Hagag AM, Pechauer AD, Liu L, Wang J, Zhang M, Jia Y, Huang D (2018) OCT angiography changes in the 3 parafoveal retinal plexuses in response to hyperoxia. Ophthalmol Retina 2(4):329–336. https://doi.org/10.1016/j.oret.2017.07.022

    Article  PubMed  Google Scholar 

  95. White DP (1995) Sleep-related breathing disorder.2. Pathophysiology of obstructive sleep apnoea. Thorax 50(7):797–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nieto FJ, Young TB, Lind BK et al (2000) Association of sleep-disordered breathing, sleep apnea, and hypertension in a large community-based study. Sleep Heart Health Study. JAMA 283(14):1829–1836. https://doi.org/. https://doi.org/10.1001/jama.283.14.1829

    Article  CAS  PubMed  Google Scholar 

  97. Shahar E, Whitney CW, Redline S et al (2001) Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med 163(1):19–25. https://doi.org/10.1164/ajrccm.163.1.2001008

    Article  CAS  PubMed  Google Scholar 

  98. Yu J, Xiao K, Huang J, Sun X, Jiang C (2017) Reduced retinal vessel density in obstructive sleep apnea syndrome patients: an optical coherence tomography angiography study. Invest Ophthalmol Vis Sci 58(9):3506–3512. https://doi.org/10.1167/iovs.17-21414

    Article  PubMed  Google Scholar 

  99. Palombi K, Renard E, Levy P, Chiquet C, Deschaux C, Romanet JP, Pépin JL (2006) Non-arteritic anterior ischaemic optic neuropathy is nearly systematically associated with obstructive sleep apnoea. Br J Ophthalmol 90(7):879–882. https://doi.org/10.1136/2Fbjo.2005.087452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chou KT, Huang CC, Tsai DC et al (2012) Sleep apnea and risk of retinal vein occlusion: a nationwide population-based study of Taiwanese. Am J Ophthalmol 154(1):200–205.e1. https://doi.org/10.1016/j.ajo.2012.01.011

    Article  PubMed  Google Scholar 

  101. Li DQ, Golding J, Choudhry N (2016) Findings in obstructive sleep apnea. Ophthalmic Surg Lasers Imaging Retina 47(9):880–884. https://doi.org/10.3928/23258160-20160901-14

    Article  PubMed  Google Scholar 

  102. Moyal L, Blumen-Ohana E, Blumen M, Blatrix C, Chabolle F, Nordmann JP (2018) Parafoveal and optic disc vessel density in patients with obstructive sleep apnea syndrome: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol 256(7):1235–1243. https://doi.org/10.1007/s00417-018-3943-7

    Article  CAS  PubMed  Google Scholar 

  103. Wang XY, Li M, Ding X, Han DM (2017) Application of optical coherence tomography angiography in evaluation of retinal microvascular changes in patients with obstructive sleep apnea syndrome. Zhonghua Yi Xue Za Zhi 97(32):2501–2505. https://doi.org/10.3760/cma.j.issn.0376-2491.2017.32.006

    Article  CAS  PubMed  Google Scholar 

  104. Ye H, Zheng C, Lan X, Zhao L, Qiao T, Li X, Zhang Y (2019) Evaluation of retinal vasculature before and after treatment of children with obstructive sleep apnea-hypopnea syndrome by optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol 257(3):543–548. https://doi.org/10.1007/s00417-018-04207-9

    Article  CAS  PubMed  Google Scholar 

  105. Lahme L, Esser EL, Mihailovic N et al (2018) Evaluation of ocular perfusion in Alzheimer’s disease using optical coherence tomography angiography. J Alzheimers Dis 66(4):1745–1752. https://doi.org/10.3233/JAD-180738

    Article  PubMed  Google Scholar 

  106. Bulut M, Kurtuluş F, Gözkaya O, Erol MK, Cengiz A, Akidan M, Yaman A (2018) Evaluation of optical coherence tomography angiographic findings in Alzheimer’s type dementia. Br J Ophthalmol 102(2):233–237. https://doi.org/10.1136/bjophthalmol-2017-310476

    Article  PubMed  Google Scholar 

  107. Li Y, Choi WJ, Wei W, Song S, Zhang Q, Liu J, Wang RK (2018) Aging-associated changes in cerebral vasculature and blood flow as determined by quantitative optical coherence tomography angiography. Neurobiol Aging 70:148–159. https://doi.org/10.1016/j.neurobiolaging.2018.06.017

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kwapong WR, Ye H, Peng C, Zhuang X, Wang J, Shen M, Lu F (2018) Retinal microvascular impairment in the early stages of Parkinson’s disease. Invest Ophthalmol Vis Sci 59:4115–4122. https://doi.org/10.1167/iovs.17-23230

    Article  CAS  PubMed  Google Scholar 

  109. Miri S, Shrier EM, Glazman S, Ding Y, Selesnick I, Kozlowski PB, Bodis-Wollner I (2015) The avascular zone and neuronal remodelling of the fovea in Parkinson disease. Ann Clin Transl Neurol 2:196–201. https://doi.org/10.1002/acn3.146

    Article  PubMed  PubMed Central  Google Scholar 

  110. Feucht N, Maier M, Lepennetier G et al (2019) Optical coherence tomography angiography indicates associations of the retinal vascular network and disease activity in multiple sclerosis. Mult Scler 25(2):224–234. https://doi.org/10.1177/2F1352458517750009

    Article  PubMed  Google Scholar 

  111. Lanzillo R, Cennamo G, Criscuolo C et al (2017) Optical coherence tomography angiography retinal vascular network assessment in multiple sclerosis. Mult Scler 24(13):1706–1714. https://doi.org/10.1177/1352458517729463

    Article  PubMed  Google Scholar 

  112. Spain RI, Liu L, Zhang X et al (2017) OCT angiography enhances the detection of optic nerve damage in multiple sclerosis. Br J Ophthalmol 102(4):520–524. https://doi.org/10.1136/bjophthalmol-2017-310477

    Article  PubMed  Google Scholar 

  113. Wang X, Jia Y, Spain R et al (2014) Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis. Br J Ophthamol 98:1368–1373. https://doi.org/10.1136/bjophthalmol-2013-304547

    Article  Google Scholar 

  114. Conigliaro P, Cesareo M, Chimenti MS et al (2019) Evaluation of retinal microvascular density in patients affected by systemic lupus erythematosus: an optical coherence tomography angiography study. Ann Rheum Dis 78(2):287–289. https://doi.org/10.1136/annrheumdis-2018-214235

    Article  CAS  PubMed  Google Scholar 

  115. Goker S, Yilmaz S, Kiziltoprak H, Tekin K, Demir G (2019) Quantitative analysis of optical coherence tomography angiography features in patients with nonocular Behcet’s disease. Curr Eye Res 44(2):212–218. https://doi.org/10.1080/02713683.2018.1530361

    Article  CAS  PubMed  Google Scholar 

  116. Rothe M, Rommel F, Klapa S et al (2019) Evaluation of retinal microvascular perfusion in systemic sclerosis: a case-control study. Ann Rheum Dis. https://doi.org/10.1136/annrheumdis-2018-214541

Download references

Acknowledgments

V.B. acknowledges support from the Deanship of the University of Münster, North Rhine-Westphalia in Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktoria C. Brücher.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

In this review of the literature, there were no individual participants included.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brücher, V.C., Storp, J.J., Eter, N. et al. Optical coherence tomography angiography-derived flow density: a review of the influencing factors. Graefes Arch Clin Exp Ophthalmol 258, 701–710 (2020). https://doi.org/10.1007/s00417-019-04553-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-019-04553-2

Keywords

Navigation