Skip to main content
Log in

Modeling of superelastic behavior of porous shape memory alloys

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

In this study the superelastic behavior of porous shape memory alloys has been simulated in a finite element procedure. The Boyd and Lagoudas plasticity like phenomenological model (Lecce and Concilio in Shape memory alloy engineering: for aerospace, structural and biomedical application, Elsevier, Oxford, 2016) has been developed by incorporating the pore volume fraction parameter to describe the behavior of porous shape memory alloys. Accordingly, to homogenize the porous media, Young’s modulus and the phase transformation function have been defined as functions of pore volume fraction. Furthermore, for random distribution of pores, Bernoulli process has been implemented. A numerical procedure was proposed and executed by a finite element code based on the proposed constitutive model. In finite element models, each pore was defined as a negligible stiffness element. Simulations show that the proposed model could precisely simulate the superelastic behavior of porous SMAs under tensile loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ashrafi, M.J., Arghavani, J., Naghdabadi, R., Sohrabpour, S., Auricchio, F.: Theoretical and numerical modeling of dense and porous shape memory alloys accounting for coupling effects of plasticity and transformation. Int. J. Solids Struct. 88–89, 248–262 (2016)

    Article  Google Scholar 

  • Ayers, R., Burkes, D., Gottoli, G., Yi, H.C., Moore, J.J.: The application of self-propagating high-temperature synthesis of engineered porous composite biomedical materials. Mater. Manuf. Process 22, 481–488 (2007)

    Article  Google Scholar 

  • Bansiddhi, A., Dunand, D.C.: Shape-memory NiTi foams produced by solid-state replication with NaF. Materials Science and Engineering 15(12), 1612–1622 (2007)

    Google Scholar 

  • Boyd, J.G., Lagoudas, D.C.: A thermodynamic constitutive model for the shape memory alloy materials, Part I: the monolithic shape memory alloy. Int. J. Plast 12(6), 805–842 (1996)

    Article  MATH  Google Scholar 

  • Charalambakis, N.: Homogenization techniques and micromechanics, a survey and perspectives. ASME Appl. Mech. Rev. 63(3), 030803 (2010)

    Article  Google Scholar 

  • Chiu, S.N., Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and Its Applications. Wiley, UK (2013)

    Book  MATH  Google Scholar 

  • DeGiorgi, V.G., Qidwai, M.A.: A computational mesoscale evaluation of material characteristics of porous shape memory alloys. Smart Mater. Struct. 11(3), 435–443 (2002)

    Article  Google Scholar 

  • Entchev, P.B., Lagoudas, D.C.: Modeling porous shape memory alloys using micromechanical averaging techniques. Mech. Mater. 34(1), 1–24 (2002)

    Article  Google Scholar 

  • Entchev, P.B., Lagoudas, D.C.: Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys, part II: porous SMA response. Mech. Mater. 36(9), 893–913 (2004)

    Article  Google Scholar 

  • Gautam, A., Callejas, M.A., Acharyya, A., Acharyya, S.G.: Shape-memory-alloy-based smart knee spacer for total knee arthroplasty: 3D CAD modelling and a computational study. Med. Engineering & Physics 55, 43–51 (2018)

    Article  Google Scholar 

  • Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  • Greiner, C., Oppenheimer, S.M., Dunand, D.C.: High strength, low stiffness, porous NiTi with superelastic properties. Acta Biomater. 1(6), 705–716 (2005)

    Article  Google Scholar 

  • Kim, Y.W., Do, D.: Shape memory characteristics of highly porous Ti-rich TiNi alloys. Mater. Lett. 162, 1–4 (2016)

    Article  Google Scholar 

  • Krone, L., Schüller, E., Bram, M., Hamed, O., Buchkremer, H.P., Stöver, D.: Mechanical behaviour of NiTi parts prepared by powder metallurgical methods. Mater. Sci. Eng., A 378, 185–190 (2004)

    Article  Google Scholar 

  • Lagoudas, D.C.: Shape Memory Alloys: Modeling and Engineering Applications. Springer, New York (2008)

    MATH  Google Scholar 

  • Lecce, L., Concilio, A.: Shape Memory Alloy Engineering: For Aerospace, Structural and Biomedical Application. Elsevier, Oxford (2016)

    Google Scholar 

  • Liu, B., Dui, G., Zhu, Y.: On phase transformation behavior of porous shape memory alloys. J. Mech. Behav. Biomed. Mater. 5(1), 9–15 (2012)

    Article  Google Scholar 

  • Moss, W.: On the computational significance of the strain space formulation of plasticity theory. Int. J. Numer. Meth. Eng. 20, 1703–1709 (1984)

    Article  MATH  Google Scholar 

  • Nemat-Nasser, S., Su, Y., Guob, W.G., Isaacsa, J.: Experimental characterization and micromechanical modeling of superelastic, response of a porous NiTi shape-memory alloy. J. Mech. Phys. Solids 53(10), 2320–2346 (2005)

    Article  Google Scholar 

  • Olsen, J.S., Zhang, Z.L.: Effect of spherical micro-voids in shape memory alloys subjected to uniaxial loading. Int. J. Solids Struct. 49(14), 1947–1960 (2012)

    Article  Google Scholar 

  • Panico, M., Brinson, L.C.: Computational modeling of porous shape memory alloys. Int. J. Solids Struct. 45(21), 5613–5626 (2008)

    Article  MATH  Google Scholar 

  • Ponsonnet, L., Treheux, D., Lissac, M., Jaffrezic, N., Grosgogeat, B.: Review of in vitro studies on the biocompatibility of NiTi alloys. Int. J. Appl. Electromagn. Mech. 23(3–4), 147–151 (2006)

    Article  Google Scholar 

  • Qidwai, M.A., Entchev, P.B., Logoudas, D.C., DeGiorgi, V.G.: Modeling of the thermomechanical behavior of porous Shape memory alloy. Int. J. Solids Struct. 38(48–49), 8653–8671 (2001)

    Article  MATH  Google Scholar 

  • Sayed, T., Gurses, E., Siddiq, A.: A phenomenological two-phase constitutive model for porous shape memory alloys. Comput. Mater. Sci. 60, 44–52 (2012)

    Article  Google Scholar 

  • Sepe, V., Marfia, S., Auricchio, F.: Response of porous SMA: a micromechanical study. Frattura ed Integrità Strutturale 8(29), 85–96 (2014)

    Article  Google Scholar 

  • Sepe, V., Auricchio, F., Marfia, S., Sacco, E.: Micromechanical analysis of porous SMA. Smart Mater. Struct. 24(8), 1–20 (2015)

    Article  MATH  Google Scholar 

  • Sepe, V., Auricchio, F., Marfia, S., Sacco, E.: Homogenization techniques for the analysis of porous SMA. Comput. Mech. 57(5), 755–772 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Shearwood, C., Fu, Y.Q., Yu, L., Khor, K.A.: Spark plasma sintering of TiNi nano-powder. Script Mater. 52, 455–460 (2005)

    Article  Google Scholar 

  • Starosvetsky, D., Gotman, I.: Corrosion behavior of titanium nitride coated Ni–Ti shape memory surgical alloy. Biomaterials 22, 1853–1859 (2001)

    Article  Google Scholar 

  • Tanaka, K.: Thermomechanical sketch of shape memory effect: one-dimensional tensile behavior. International Journal of Structural Mechanics and Materials Science 18(3), 251–263 (1986)

    Google Scholar 

  • Teppei, W., Yoshimi, W., Hiroshi, O.: Development of Fe–Mn–Si–Cr shape memory alloy fiber reinforced plaster based smart composites. Mater. Sci. Forum 475, 2063–2066 (2005)

    Google Scholar 

  • Turner, C.H., Rho, J., Takano, Y., Tsui, T.Y., Pharr, G.M.: The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. J. Biomech. 32(4), 437–441 (1999)

    Article  Google Scholar 

  • Whitney, M., Corbin, S.F., Gorbet, R.B.: Investigation of the mechanisms of reactive sintering and combustion synthesis of NiTi using differential scanning calorimetry and microstructural analysis. Acta Mater. 56, 559–570 (2008)

    Article  Google Scholar 

  • Zhao, Y., Taya, M.: Analytical modeling for stress–strain curve of a porous NiTi. J. Appl. Mech. 74(2), 291–297 (2007)

    Article  MATH  Google Scholar 

  • Zhao, Y., Taya, M., Izui, H.: Study on energy absorbing composite structure made of concentric NiTi spring and porous NiTi. Int. J. Solids Struct. 43(9), 2497–2512 (2006)

    Article  MATH  Google Scholar 

  • Zhu, Y., Dui, G.: A model considering hydrostatic stress of porous NiTi shape memory alloys. Acta Mech. Solida Sinica 24(4), 289–298 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Hamed Hoseini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdollahzadeh, M., Hoseini, S.H. & Faroughi, S. Modeling of superelastic behavior of porous shape memory alloys. Int J Mech Mater Des 16, 109–121 (2020). https://doi.org/10.1007/s10999-019-09457-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-019-09457-x

Keywords

Navigation