Skip to main content

Advertisement

Log in

Prediction of Flyrock in Mine Blasting: A New Computational Intelligence Approach

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Blasting is the predominant rock fragmentation technique in civil constructions, underground and surface mines. Flyrock is the unwanted throw of rock fragments during blasting and is the major cause of considerable damage in and around the mines. The present research aimed to propose a new intelligence-based method to predict flyrock. In this regard, the recurrent fuzzy neural network (RFNN) combined with the genetic algorithm (GA) is proposed. For checking the suitability of the RFNN-GA model, artificial neural network (ANN), hybrid ANN and GA and a nonlinear regression model were also employed. To achieve the aims of the research, data for 70 blasting sites including four input parameters (spacing, burden, stemming and maximum charge per delay) and one output parameter (flyrock) were gathered from two quarry mines at the Shur River dam, Iran. The performance of the proposed prediction methods was then assessed with statistical evaluation criteria, i.e., R-square and root mean square error. The results indicate the proposed RFNN-GA model was more superior for prediction of flyrock than the GA-ANN, ANN and nonlinear regression models. According to a sensitivity analysis, the maximum charge per delay was the most influential parameter in flyrock prediction in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • Akhtarpour, A., & Khodaii, A. (2014). A study of the seismic response of asphaltic concrete used as a core in rockfill dams. Journal of Seismology and Earthquake Engineering,16(3), 169–184.

    Google Scholar 

  • Aliev, R. A., Guirimov, B. G., Fazlollahi, B., & Aliev, R. R. (2009). Evolutionary algorithm-based learning of fuzzy neural networks. Part 2: Recurrent fuzzy neural networks. Fuzzy Sets and Systems,160(17), 2553–2566.

    Article  Google Scholar 

  • Amiri, M., Amnieh, H. B., Hasanipanah, M., & Khanli, L. M. (2016). A new combination of artificial neural network and K-nearest neighbors models to predict blast-induced ground vibration and air-overpressure. Engineering with Computers,32(4), 631–644.

    Article  Google Scholar 

  • Bajpayee, T., Rehak, T., Mowrey, G., & Ingram, D. (2004). Blasting injuries in surface mining with emphasis on flyrock and blast area security. Journal of Safety Research,35(1), 47–57.

    Article  Google Scholar 

  • Duong, H. N., Nguyen, Q., Ta Bui, L., Nguyen, H., & Snášel, V. (2014). Applying recurrent fuzzy neural network to predict the runoff of Srepok River. In IFIP International conference on computer information systems and industrial management CISIM: computer information systems and industrial management (pp 55–66).

  • Duong, H. N., Nguyen, H. T., Vaclav, S., & Sanghyuk, L. (2016). A Comparative Study of SWAT, RFNN and RFNN-GA for predicting river runoff. Indian Journal of Science and Technology,9(17), 10–12. https://doi.org/10.17485/ijst/2016/v9i17/92308.

    Article  Google Scholar 

  • Gao, W., Karbasi, M., Hasanipanah, M., Zhang, X., & Guo, J. (2018). Developing GPR model for forecasting the rock fragmentation in surface mines. Engineering with Computers,34(2), 339–345.

    Article  Google Scholar 

  • Ghahreman Nejad, B., Soden, P., Taiebat, H., & Murphy, S. (2010). Seismic deformation analysis of a rockfill dam with a bituminous concrete core. Materials Science and Engineering,10, 012106. https://doi.org/10.1088/1757-899X/10/1/012106.

    Article  Google Scholar 

  • Ghasemi, E., Amini, H., Ataei, M., & Khalokakaei, R. (2014a). Application of artificial intelligence techniques for predicting the flyrock distance caused by blasting operation. Arabian Journal of Geosciences,7, 193–202.

    Article  Google Scholar 

  • Ghasemi, E., & Ataei, M. (2013). Application of fuzzy logic for predicting roof fall rate in coal mines. Neural Computing and Applications,22, 311–321.

    Article  Google Scholar 

  • Ghasemi, E., Sari, M., & Ataei, M. (2014b). Development of an empirical model for predicting the effects of controllable blasting parameters on flyrock distance in surface mines. International Journal of Rock Mechanics and Mining Sciences,52, 163–170.

    Article  Google Scholar 

  • Hagan, M. T., & Menhaj, M. B. (1994). Training feed forward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks,5(6), 861–867.

    Article  Google Scholar 

  • Hasanipanah, M., Armaghani, D. J., Amnieh, H. B., Majid, M. Z. A., & Tahir, M. M. D. (2017a). Application of PSO to develop a powerful equation for prediction of flyrock due to blasting. Neural Computing and Applications,28(1), 1043–1050.

    Article  Google Scholar 

  • Hasanipanah, M., Bakhshandeh Amnieh, H., Arab, H., & Zamzam, M. S. (2016a). Feasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blasting. Neural Computing and Applications,30(4), 1015–1024.

    Article  Google Scholar 

  • Hasanipanah, M., Golzar, S. B., Larki, I. A., Maryaki, M. Y., & Ghahremanians, T. (2017b). Estimation of blast-induced ground vibration through a soft computing framework. Engineering with Computers,33(4), 951–959.

    Article  Google Scholar 

  • Hasanipanah, M., Naderi, R., Kashir, J., Noorani, S. A., & Zeynali Aaq Qaleh, A. (2016b). Prediction of blast produced ground vibration using particle swarm optimization. Engineering with Computers,33(2), 173–179. https://doi.org/10.1007/s00366-016-0462-1.

    Article  Google Scholar 

  • Hasanipanah, M., Shahnazar, A., Arab, H., Golzar, S. B., & Amiri, M. (2017c). Developing a new hybrid-AI model to predict blast induced backbreak. Engineering with Computers,33(3), 349–359.

    Article  Google Scholar 

  • Hasanipanah, M., Shirani Faradonbeh, R., Jahed Armaghani, D., Bakhshandeh Amnieh, H., & Khandelwal, M. (2017d). Development of a precise model for prediction of blast-induced flyrock using regression tree technique. Environmental Earth Sciences,76, 27.

    Article  Google Scholar 

  • Hecht-Nielsen, R. (1987). Kolmogorov’s mapping neural network existence theorem. In Proceedings of the 1st IEEE International Conference on Neural Networks (pp. 11–14). San Diego, CA, USA.

  • Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal Approximators. Neural Networks,2, 359–366.

    Article  Google Scholar 

  • Institute of Makers of Explosives (I.M.E.). (1997). Glossary of commercial explosive industry terms (Vol. 12, p. 16). Washington, DC: Institute of Makers of Explosives, Safety publication.

  • Jahed Armaghani, D., Hajihassani, M., Mohamad, E. T., Marto, A., & Noorani, S. A. (2014). Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization. Arabian Journal of Geosciences,7, 5383–5396.

    Article  Google Scholar 

  • Jahed Armaghani, D., Hajihassani, M., Monjezi, M., Mohamad, E. T., Marto, A., & Moghaddam, M. R. (2015). Application of two intelligent systems in predicting environmental impacts of quarry blasting. Arabian Journal of Geosciences,1, 1. https://doi.org/10.1007/s12517-015-1908-2.

    Article  Google Scholar 

  • Jahed Armaghani, D., Hasanipanah, M., Bakhshandeh Amnieh, H., & Mohamad, E. T. (2016a). Feasibility of ICA in approximating ground vibration resulting from mine blasting. Neural Computing and Applications. https://doi.org/10.1007/s00521-016-2577-0.

    Article  Google Scholar 

  • Jahed Armaghani, D., Hasanipanah, M., Mahdiyar, A., et al. (2016b). Airblast prediction through a hybrid genetic algorithm-ANN model. Neural Computing and Applications. https://doi.org/10.1007/s00521-016-2598-8.

    Article  Google Scholar 

  • Jahed Armaghani, D., Hasanipanah, M., & Mohamad, E. T. (2016c). A combination of the ICA-ANN model to predict air- overpressure resulting from blasting. Engineering with Computers,32(1), 155–171.

    Article  Google Scholar 

  • Juang, C. F. (2004). A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),34(2), 997–1006.

    Article  Google Scholar 

  • Kecojevic, V., & Radomsky, M. (2005). Flyrock phenomena and area security in blasting-related accidents. Safety Science,43(9), 739–750.

    Article  Google Scholar 

  • Keshtegar, B., Hasanipanah, M., Bakhshayeshi, I., & Sarafraz, M. E. (2019). A novel nonlinear modeling for the prediction of blast induced airblast using a modified conjugate FR method. Measurement,131, 35–41.

    Article  Google Scholar 

  • Khandelwal, M., & Monjezi, M. (2013). Prediction of flyrock in open pit blasting operation using machine learning method. International Journal of Rock Mechanics and Mining Sciences,23, 313–316.

    Google Scholar 

  • Khanesar, M. A., Shoorehdeli, M. A., & Teshnehlab, M. (2007). Hybrid training of recurrent fuzzy neural network model. In International IEEE conference on mechatronics and automation, ICMA 2007 (pp. 2598–2603).

  • Koopialipoor, M., Fallah, A., Jahed Armaghani, D., Azizi, A., & Tonnizam Mohamad, E. (2018). Three hybrid intelligent models in estimating flyrock distance resulting from blasting. Engineering with Computers. https://doi.org/10.1007/s00366-018-0596-4.

    Article  Google Scholar 

  • Li, C., & Cheng, K. H. (2007). Recurrent neuro-fuzzy hybrid-learning approach to accurate system modeling. Fuzzy Sets and Systems,158(2), 194–212.

    Article  Google Scholar 

  • Marto, A., Hajihassani, M., Jahed Armaghani, D., Tonnizam Mohamad, E., & Makhtar, A. M. (2014). A novel approach for blast induced flyrock prediction based on imperialist competitive algorithm and artificial neural network. The Scientific World Journal,5, 643715.

    Google Scholar 

  • Moayedi, H., & Hayati, S. (2018). Artificial intelligence design charts for predicting friction capacity of driven pile in clay. Neural Computing and Applications. https://doi.org/10.1007/s00521-018-3555-5.

    Article  Google Scholar 

  • Moayedi, H., & Rezaei, A. (2018). An artificial neural network approach for under-reamed piles subjected to uplift forces in dry sand. Neural Computing and Applications. https://doi.org/10.1007/s00521-017-2990-z.

    Article  Google Scholar 

  • Moayedi, H., et al. (2018). Modification of landslide susceptibility mapping using optimized PSO-ANN technique. Engineering with Computers,1, 1. https://doi.org/10.1007/s00366-018-0644-0.

    Article  Google Scholar 

  • Momeni, E., Nazir, R., Armaghani, D. J., & Maizir, H. (2014). Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN. Measurement,57, 122–131.

    Article  Google Scholar 

  • Monjezi, M., Khoshalan, H. A., & Varjani, A. Y. (2012). Prediction of flyrock and backbreak in open pit blasting operation: a neuro genetic approach. Arabian Journal of Geosciences,5, 441–448.

    Article  Google Scholar 

  • Monjezi, M., Mehrdanesh, A., Malek, A., & Khandelwal, M. (2013). Evaluation of effect of blast design parameters on flyrock using artificial neural networks. Neural Computing and Applications,23, 349–356.

    Article  Google Scholar 

  • Nguyen, H., & Bui, X. N. (2018). Predicting blast-induced air overpressure: A robust artificial intelligence system based on artificial neural networks and random forest. Natural Resources Research. https://doi.org/10.1007/s11053-018-9424-1.

    Article  Google Scholar 

  • Nguyen, H., Bui, X. N., Bac, B. H., & Mai, N. L. (2018a). A comparative study of artificial neural networks in predicting blast-induced air-blast overpressure at Deo Nai open-pit coal mine, Vietnam. Neural Computing and Applications. https://doi.org/10.1007/s00521-018-3717-5.

    Article  Google Scholar 

  • Nguyen, H., Xuan-Nam, B., Quang-Hieu, T., Thao-Qui, L., Ngoc-Hoan, D., & Le, T. T. H. (2018b). Evaluating and predicting blast-induced ground vibration in open-cast mine using ANN: a case study in Vietnam. SN Applied Sciences,1(1), 125.

    Article  Google Scholar 

  • Rezaei, M. (2016). Development of an intelligent model to estimate the height of caving–fracturing zone over the longwall gobs. Neural Computing and Applications. https://doi.org/10.1007/s00521-016-2809-3.

    Article  Google Scholar 

  • Rezaei, M., Monjezi, M., & Varjani, A. Y. (2011). Development of a fuzzy model to predict flyrock in surface mining. Safety Science,49(2), 298–305.

    Article  Google Scholar 

  • Shahnazar, A., Nikafshan Rad, H., Hasanipanah, M., Tahir, M. M., Jahed Armaghani, D., & Ghoroqi, M. (2017). A new developed approach for the prediction of ground vibration using a hybrid PSO-optimized ANFIS-based model. Environmental Earth Sciences,76(15), 527.

    Article  Google Scholar 

  • Shirani Faradonbeh, R., Jahed Armaghani, D., Bakhshandeh Amnieh, H., & Tonnizam Mohamad, E. (2016). Prediction and minimization of blast-induced flyrock using gene expression programming and firefly algorithm. Neural Computing and Applications: DOI. https://doi.org/10.1007/s00521-016-2537-8.

    Book  Google Scholar 

  • Singh, T. N., Kanchan, R., & Verma, A. K. (2004). Prediction of blast induced ground vibration and frequency using an artificial intelligent technique. Noise & Vibration Worldwide,35(11), 7–15.

    Article  Google Scholar 

  • Singh, J., Verma, A. K., Banka, H., Singh, T. N., & Maheshwar, S. (2016). A study of soft computing models for prediction of longitudinal wave velocity. Arabian Journal of Geosciences,9, 224.

    Article  Google Scholar 

  • Taheri, K., Hasanipanah, M., Bagheri Golzar, S., & Abd Majid, M. Z. (2017). A hybrid artificial bee colony algorithm-artificial neural network for forecasting the blast-produced ground vibration. Engineering with Computers,33(3), 689–700.

    Article  Google Scholar 

  • Trivedi, R., Singh, T. N., & Gupta, N. I. (2015). Prediction of blast induced flyrock in opencast mines using ANN and ANFIS. Geotechnical and Geological Engineering,33, 875–891.

    Article  Google Scholar 

  • Trivedi, R., Singh, T. N., & Raina, A. K. (2014). Prediction of blast induced flyrock in Indian limestone mines using neural networks. Journal of Rock Mechanics and Geotechnical Engineering,6, 447–454.

    Article  Google Scholar 

  • Yang, Y., & Zang, O. (1997). A hierarchical analysis for rock engineering using artificial neural networks. Rock Mechanics and Rock Engineering,30, 207–222.

    Article  Google Scholar 

  • Zhao, L., & Fei-Yue, W. (2007). Design for recurrent fuzzy neural networks using MSC-MFS and PSO-MBP. Systems, Man and Cybernetics, IEEE International Conference,1, 1. https://doi.org/10.1109/icsmc.2007.4413817.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hima Nikafshan Rad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikafshan Rad, H., Bakhshayeshi, I., Wan Jusoh, W.A. et al. Prediction of Flyrock in Mine Blasting: A New Computational Intelligence Approach. Nat Resour Res 29, 609–623 (2020). https://doi.org/10.1007/s11053-019-09464-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-019-09464-x

Keywords

Navigation