Skip to main content

Advertisement

Log in

Perovskite Solar Fibers: Current Status, Issues and Challenges

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Perovskite-based solar cells with high power conversion efficiencies (PCEs) are currently being demonstrated in solid-state device designs. Their elevated performances can possibly be attained with different non-standard geometries, for example, the fiber-shaped perovskite solar cells, in the light of careful design and engineering. Fiber-shaped solar cells are promising in smart textiles energy harvesting towards next-generation electronic applications and devices. They can be made with facile process and at low cost. Recently, fiber-shaped perovskite solar devices have been reported, particularly with the focus on the proof-of-concept in such non-traditional architectures. In this line, there are so many technical aspects which need to be addressed, if these photovoltaic (PV) cells are to be industrialized and produced massively. Herein, a well-organized and comprehensive discussion about the reported devices in this arena is presented. The challenges that need to be addressed, the possible solutions and the probable applications of these PV cells are also discussed. More still, the perovskite fiber-shaped PV cells with other fiber PV devices reported in literature in terms of their scope, characteristic designs, performances, and other technical considerations have been summarised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sheffield J. World population growth and the role of annual energy use per capita. Technol Forecast Soc Chang. 1998;59(1):55–87.

    Article  CAS  Google Scholar 

  2. Lewis NS, Nocera DG. Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci USA. 2006;103(43):15729–35.

    Article  CAS  Google Scholar 

  3. Nakicenovic N, Alcamo J, Grubler A, Riahi K, Roehrl R, Rogner H-H, et al. Special report on emissions scenarios (SRES), a special report of Working Group III of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2000.

    Google Scholar 

  4. Jäger-Waldau A. Snapshot of photovoltaics—February 2018. EPJ Photovolt. 2018;9:6.

    Article  Google Scholar 

  5. Qiu L, Deng J, Lu X, Yang Z, Peng H. Integrating perovskite solar cells into a flexible fiber. Angew Chem Int Ed. 2014;53(39):10425–8.

    Article  CAS  Google Scholar 

  6. Li R, Xiang X, Tong X, Zou J, Li Q. Wearable double-twisted fibrous perovskite solar cell. Adv Mater. 2015;27(25):3831–5.

    Article  CAS  Google Scholar 

  7. Deng J, Qiu L, Lu X, Yang Z, Guan G, Zhang Z, et al. Elastic perovskite solar cells. J Mater Chem A. 2015;3(42):21070–6.

    Article  CAS  Google Scholar 

  8. Hu H, Yan K, Peng M, Yu X, Chen S, Chen B, et al. Fiber-shaped perovskite solar cells with 5.3% efficiency. J Mater Chem A. 2016;4(10):3901–6.

    Article  CAS  Google Scholar 

  9. Qiu L, He S, Yang J, Deng J, Peng H. Fiber-shaped perovskite solar cells with high power conversion efficiency. Small. 2016;12(18):2419–24.

    Article  CAS  Google Scholar 

  10. Hu H, Dong B, Chen B, Gao X, Zou D. High performance fiber-shaped perovskite solar cells based on lead acetate precursor. Sustain Energy Fuels. 2018;2(1):79–84.

    Article  CAS  Google Scholar 

  11. Tebyetekerwa M, Marriam I, Xu Z, Yang S, Zhang H, Zabihi F, et al. Critical insight: challenges and requirements of fibre electrodes for wearable electrochemical energy storage. Energy Environ Sci. 2019;12(7):2148–60.

    Google Scholar 

  12. Cronin L, Molina PI, Miras HN, editors. Polyoxometalate-based solar cells for water splitting. Solar hydrogen and nanotechnology, VI. In: International Society for Optics and Photonics; 2011; 8109. https://doi.org/10.1117/12.895296

  13. Di Giacomo F, Fakharuddin A, Jose R, Brown TM. Progress, challenges and perspectives in flexible perovskite solar cells. Energy Environ Sci. 2016;9(10):3007–35.

    Article  Google Scholar 

  14. Grätzel M. Photoelectrochemical cells. Nature. 2001;414(6861):338.

    Article  Google Scholar 

  15. Nwanya A, Ezema F, Ejikeme P. Dyed sensitized solar cells: a technically and economically alternative concept to pn junction photovoltaic devices. Int J Phys Sci. 2011;6(22):5190–201.

    CAS  Google Scholar 

  16. Catchpole K, Polman A. Plasmonic solar cells. Opt Express. 2008;16(26):21793–800.

    Article  CAS  Google Scholar 

  17. Baker A. A history of solar cells: how technology has evolved. Saatavissa. 2016;5:2018. https://www.solarpowerauthority.com/a-history-ofsolar-cells/Hakupäivä.

  18. Kotilainen K. Energy Prosumers’ role in accelerating sustainability—an empirical study in five European Countries. In: 2018 15th International Conference on the European Energy Market (EEM). IEEE; 2018. https://doi.org/10.1109/EEM.2018.8469870.

  19. Green journal. Has the drop in solar panel prices increased the demand? 2017https://www.greenjournal.co.uk/2017/02/has-the-drop-in-solar-panel-prices-increased-the-demand/. Accessed 15 May 2019.

  20. Europe S. Global market outlook for solar power 2018–2022. Brussels: Solar Power Europe; 2018.

    Google Scholar 

  21. Singha B, Solanki CS. N-type solar cells: advantages, issues, and current scenarios. Mater Res Express. 2017;4(7):072001.

    Article  CAS  Google Scholar 

  22. Dunlop ED, Halton D. The performance of crystalline silicon photovoltaic solar modules after 22 years of continuous outdoor exposure. Prog Photovolt Res Appl. 2006;14(1):53–64.

    Article  Google Scholar 

  23. Gao P, Grätzel M, Nazeeruddin MK. Organohalide lead perovskites for photovoltaic applications. Energy Environ Sci. 2014;7(8):2448–63.

    Article  CAS  Google Scholar 

  24. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science. 2012;338(6107):643–7.

    Article  CAS  Google Scholar 

  25. NREL. Best research-cell efficiencies: National Renewable Energy Laboratory; 2019. https://www.nrel.gov/pv/assets/pdfs/pv-efficiency-chart.20190103.pdf (updated 03/01/2019; cited 2018 12/02/2019).

  26. Yin W-J, Yang J-H, Kang J, Yan Y, Wei S-H. Halide perovskite materials for solar cells: a theoretical review. J Mater Chem A. 2015;3(17):8926–42.

    Article  CAS  Google Scholar 

  27. Fakharuddin A, Seybold M, Agresti A, Pescetelli S, Matteocci F, Haider MI, et al. Perovskite-polymer blends influencing microstructures, nonradiative recombination pathways, and photovoltaic performance of perovskite solar cells. ACS Appl Mater Interfaces. 2018;10(49):42542–51.

    Article  CAS  Google Scholar 

  28. Xiao Z, Zhao L, Tran NL, Lin YL, Silver SH, Kerner RA, et al. Mixed-halide perovskites with stabilized bandgaps. Nano Lett. 2017;17(11):6863–9.

    Article  CAS  Google Scholar 

  29. Yin WJ, Shi T, Yan Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv Mater. 2014;26(27):4653–8.

    Article  CAS  Google Scholar 

  30. Zhu H, Liu J-M. Electronic structure of organometal halide perovskite CH3NH3BiI3 and optical absorption extending to infrared region. Sci Rep. 2016;6:37425.

    Article  CAS  Google Scholar 

  31. Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science. 2015;347(6225):967–70.

    Article  CAS  Google Scholar 

  32. Ponseca CS Jr, Savenije TJ, Abdellah M, Zheng K, Yartsev A, Pascher T, et al. Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J Am Chem Soc. 2014;136(14):5189–92.

    Article  CAS  Google Scholar 

  33. Adhyaksa GW, Veldhuizen LW, Kuang Y, Brittman S, Schropp RE, Garnett EC. Carrier diffusion lengths in hybrid perovskites: processing, composition, aging, and surface passivation effects. Chem Mater. 2016;28(15):5259–63.

    Article  CAS  Google Scholar 

  34. Xing G, Mathews N, Sun S, Lim SS, Lam YM, Grätzel M, et al. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science. 2013;342(6156):344–7.

    Article  CAS  Google Scholar 

  35. Bi Y, Hutter EM, Fang Y, Dong Q, Huang J, Savenije TJ. Charge carrier lifetimes exceeding 15 μs in methylammonium lead iodide single crystals. J Phys Chem Lett. 2016;7(5):923–8.

    Article  CAS  Google Scholar 

  36. Kang J, Wang L-W. High defect tolerance in lead halide perovskite CsPbBr 3. J Phys Chem Lett. 2017;8(2):489–93.

    Article  CAS  Google Scholar 

  37. Huang H, Bodnarchuk MI, Kershaw SV, Kovalenko MV, Rogach AL. Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Lett. 2017;2(9):2071–83.

    Article  CAS  Google Scholar 

  38. Meggiolaro D, Motti SG, Mosconi E, Barker AJ, Ball J, Perini CAR, et al. Iodine chemistry determines the defect tolerance of lead-halide perovskites. Energy Environ Sci. 2018;11(3):702–13.

    Article  CAS  Google Scholar 

  39. Yun JS, Ho-Baillie A, Huang S, Woo SH, Heo Y, Seidel J, et al. Benefit of grain boundaries in organic–inorganic halide planar perovskite solar cells. J Phys Chem Lett. 2015;6(5):875–80.

    Article  CAS  Google Scholar 

  40. Long R, Liu J, Prezhdo OV. Unravelling the effects of grain boundary and chemical doping on electron–hole recombination in CH3NH3PbI3 perovskite by time-domain atomistic simulation. J Am Chem Soc. 2016;138(11):3884–90.

    Article  CAS  Google Scholar 

  41. Mesquita I, Andrade L, Mendes A. Perovskite solar cells: materials, configurations and stability. Renew Sustain Energy Rev. 2018;82:2471–89.

    Article  CAS  Google Scholar 

  42. Shi J, Dong J, Lv S, Xu Y, Zhu L, Xiao J, et al. Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: high efficiency and junction property. Appl Phys Lett. 2014;104(6):063901.

    Article  CAS  Google Scholar 

  43. Etgar L, Gao P, Xue Z, Peng Q, Chandiran AK, Liu B, et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc. 2012;134(42):17396–9.

    Article  CAS  Google Scholar 

  44. Xu F, Zhang T, Li G, Zhao Y. Synergetic effect of chloride doping and CH3NH3PbCl3 on CH3NH3PbI3 − xClx perovskite-based solar cells. Chemsuschem. 2017;10(11):2365–9.

    Article  CAS  Google Scholar 

  45. Zhang H, Fu X, Tang Y, Wang H, Zhang C, William WY, et al. Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals. Nat Commun. 2019;10(1):1088.

    Article  CAS  Google Scholar 

  46. Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJ, Leijtens T, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science. 2013;342(6156):341–4.

    Article  CAS  Google Scholar 

  47. Wang X, Ling Y, Lian X, Xin Y, Dhungana KB, Perez-Orive F, et al. Suppressed phase separation of mixed-halide perovskites confined in endotaxial matrices. Nat Commun. 2019;10(1):695.

    Article  CAS  Google Scholar 

  48. Kedem N, Brenner TM, Kulbak M, Schaefer N, Levcenko S, Levine I, et al. Light-induced increase of electron diffusion length in ap–n junction type CH3NH3PbBr 3 perovskite solar cell. J Phys Chem Lett. 2015;6(13):2469–76.

    Article  CAS  Google Scholar 

  49. Zhang F, Yang B, Li Y, Deng W, He R. Extra long electron–hole diffusion lengths in CH 3 NH 3 PbI 3–x Cl x perovskite single crystals. J Mater Chem C. 2017;5(33):8431–5.

    Article  CAS  Google Scholar 

  50. Misra RK, Ciammaruchi L, Aharon S, Mogilyansky D, Etgar L, Visoly-Fisher I, et al. Effect of halide composition on the photochemical stability of perovskite photovoltaic materials. Chemsuschem. 2016;9(18):2572–7.

    Article  CAS  Google Scholar 

  51. Elbaz GA, Straus DB, Semonin OE, Hull TD, Paley DW, Kim P, et al. Unbalanced hole and electron diffusion in lead bromide perovskites. Nano Lett. 2017;17(3):1727–32.

    Article  CAS  Google Scholar 

  52. Sheng R, Ho-Baillie A, Huang S, Chen S, Wen X, Hao X, et al. Methylammonium lead bromide perovskite-based solar cells by vapor-assisted deposition. J Phys Chem C. 2015;119(7):3545–9.

    Article  CAS  Google Scholar 

  53. Zhang M, Yu H, Lyu M, Wang Q, Yun J-H, Wang L. Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH 3 NH 3 PbBr 3–x Cl x films. Chem Commun. 2014;50(79):11727–30.

    Article  CAS  Google Scholar 

  54. Gupta A, Mishra BK, Sathyamurthy N. Influence of stacking on the ground and excited states of 2-aminopyridine. Comput Theor Chem. 2019;1148:60–6.

    Article  CAS  Google Scholar 

  55. Sarritzu V, Sestu N, Marongiu D, Chang X, Wang Q, Masi S, et al. Direct or indirect bandgap in hybrid lead halide perovskites? Adv Opt Mater. 2018;6(10):1701254.

    Article  CAS  Google Scholar 

  56. Wang T, Daiber B, Frost JM, Mann SA, Garnett EC, Walsh A, et al. Indirect to direct bandgap transition in methylammonium lead halide perovskite. Energy Environ Sci. 2017;10(2):509–15.

    Article  CAS  Google Scholar 

  57. Kostopoulou A, Kymakis E, Stratakis E. Perovskite nanostructures for photovoltaic and energy storage devcesi. J Mater Chem A. 2018;6(21):9765–98.

    Article  CAS  Google Scholar 

  58. Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R, Hendon CH, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015;15(6):3692–6.

    Article  CAS  Google Scholar 

  59. Shamsi J, Dang Z, Bianchini P, Canale C, Di Stasio F, Brescia R, et al. Colloidal synthesis of quantum confined single crystal CsPbBr 3 nanosheets with lateral size control up to the micrometer range. J Am Chem Soc. 2016;138(23):7240–3.

    Article  CAS  Google Scholar 

  60. Li X, Wu Y, Zhang S, Cai B, Gu Y, Song J, et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv Funct Mater. 2016;26(15):2435–45.

    Article  CAS  Google Scholar 

  61. Yuan L, Huang K, Wang S, Hou C, Wu X, Zou B, et al. Crystal shape tailoring in perovskite structure rare-earth ferrites REFeO3 (RE = La, Pr, Sm, Dy, Er, and Y) and shape-dependent magnetic properties of YFeO3. Cryst Growth Des. 2016;16(11):6522–30.

    Article  CAS  Google Scholar 

  62. Hildebrandt NC, Soldat J, Marschall R. Layered perovskite nanofibers via electrospinning for overall water splitting. Small. 2015;11(17):2051–7.

    Article  CAS  Google Scholar 

  63. Chen C-Q, Li W, Cao C-Y, Song W-G. Enhanced catalytic activity of perovskite oxide nanofibers for combustion of methane in coal mine ventilation air. J Mater Chem. 2010;20(33):6968–74.

    Article  CAS  Google Scholar 

  64. Zheng H, Zhan Q, Zavaliche F, Sherburne M, Straub F, Cruz MP, et al. Controlling self-assembled perovskite—spinel nanostructures. Nano Lett. 2006;6(7):1401–7.

    Article  CAS  Google Scholar 

  65. Rørvik PM, Grande T, Einarsrud MA. One-dimensional nanostructures of ferroelectric perovskites. Adv Mater. 2011;23(35):4007–34.

    Article  CAS  Google Scholar 

  66. Tyagi P, Arveson SM, Tisdale WA. Colloidal organohalide perovskite nanoplatelets exhibiting quantum confinement. J Phys Chem Lett. 2015;6(10):1911–6.

    Article  CAS  Google Scholar 

  67. Sichert JA, Tong Y, Mutz N, Vollmer M, Fischer S, Milowska KZ, et al. Quantum size effect in organometal halide perovskite nanoplatelets. Nano Lett. 2015;15(10):6521–7.

    Article  CAS  Google Scholar 

  68. Even J, Pedesseau L, Katan C. Understanding quantum confinement of charge carriers in layered 2D hybrid perovskites. ChemPhysChem. 2014;15(17):3733–41.

    Article  CAS  Google Scholar 

  69. Castañeda JA, Nagamine G, Yassitepe E, Bonato LG, Voznyy O, Hoogland S, et al. Efficient biexciton interaction in perovskite quantum dots under weak and strong confinement. ACS Nano. 2016;10(9):8603–9.

    Article  CAS  Google Scholar 

  70. Smart Textiles Industry Trends and Market Segment Forecasts to 2020. San Francisco, USA. Report No.: 978-1-68038-061-3; 2015.

  71. Mayer-Schönberger V. The future is fiber: The coming tech revolution—and why America might miss It. Am Assoc Adv Sci. 2019; 367(6423):133. 

    Google Scholar 

  72. Caucheteur C, Guo T, Albert J. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal Bioanal Chem. 2015;407(14):3883–97.

    Article  CAS  Google Scholar 

  73. Ren J, Bai W, Guan G, Zhang Y, Peng H. Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber. Adv Mater. 2013;25(41):5965–70.

    Article  CAS  Google Scholar 

  74. Helman C. How much electricity do your gadgets really use? Forbes Retrieved Dec. 2013;3:2013.

    Google Scholar 

  75. Horowitz N, Calwell C, Foster S, editors. Opportunities and recommendations for reducing the energy consumption of consumer electronics products. In: Proceedings of the 2005 IEEE International Symposium on Electronics and the Environment. IEEE; 2005https://doi.org/10.1109/ISEE.2005.1437008

  76. Schubert MB, Werner JH. Flexible solar cells for clothing. Mater Today. 2006;9(6):42–50.

    Article  CAS  Google Scholar 

  77. Liu Z, Wang XC. Manufacture and performance evaluation of solar garment. J Clean Prod. 2013;42:96–102.

    Article  Google Scholar 

  78. Zhang M, Gao T, Wang J, Liao J, Qiu Y, Yang Q, et al. A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application. Nano Energy. 2015;13:298–305.

    Article  CAS  Google Scholar 

  79. Pu X, Song W, Liu M, Sun C, Du C, Jiang C, et al. Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells. Adv Energy Mater. 2016;6(20):1601048.

    Article  CAS  Google Scholar 

  80. Chen T, Qiu L, Yang Z, Peng H. Novel solar cells in a wire format. Chem Soc Rev. 2013;42(12):5031–41.

    Article  CAS  Google Scholar 

  81. Krebs FC, Biancardo M, Winther-Jensen B, Spanggard H, Alstrup J. Strategies for incorporation of polymer photovoltaics into garments and textiles. Sol Energy Mater Sol Cells. 2006;90(7–8):1058–67.

    Article  CAS  Google Scholar 

  82. Binek A, Petrus ML, Huber N, Bristow H, Hu Y, Bein T, et al. Recycling perovskite solar cells to avoid lead waste. ACS Appl Mater Interfaces. 2016;8(20):12881–6.

    Article  CAS  Google Scholar 

  83. Kim BJ, Kim DH, Kwon SL, Park SY, Li Z, Zhu K, et al. Selective dissolution of halide perovskites as a step towards recycling solar cells. Nat Commun. 2016;7:11735.

    Article  CAS  Google Scholar 

  84. Kadro JM, Pellet N, Giordano F, Ulianov A, Müntener O, Maier J, et al. Proof-of-concept for facile perovskite solar cell recycling. Energy Environ Sci. 2016;9(10):3172–9.

    Article  CAS  Google Scholar 

  85. Tiles KGN. Smart wearable devices. 2015. https://www.din.de/blob/160444/56136d9f7c1b2d5a6826c844742903db/wearables-data.pdf. Accessed 26 June 2019.

  86. Hanuska A, Chandramohan B, Bellamy L, Burke P, Ramanathan R, Balakrishnan V. Smart clothing market analysis. Technical Report; 2016.

  87. Yang H, Yu J, Zo H, Choi M. User acceptance of wearable devices: an extended perspective of perceived value. Telemat Inform. 2016;33(2):256–69.

    Article  Google Scholar 

  88. Fthenakis VM. Life cycle impact analysis of cadmium in CdTe PV production. Renew Sustain Energy Rev. 2004;8(4):303–34.

    Article  CAS  Google Scholar 

  89. Wenk H-R, Bulakh A. Minerals: their constitution and origin. Cambridge: Cambridge University Press; 2016.

    Book  Google Scholar 

  90. Roth RS. Classification of perovskite and other ABO3-type compounds. J Res Nat Bur Stand. 1957;58(2):75–88.

    Article  CAS  Google Scholar 

  91. Johnsson M, Lemmens P. Crystallography and chemistry of perovskites. In: Handbook of magnetism and advanced magnetic materials. 2007. https://doi.org/10.1002/9780470022184.hmm411

  92. Habibi M, Zabihi F, Ahmadian-Yazdi MR, Eslamian M. Progress in emerging solution-processed thin film solar cells—part II: perovskite solar cells. Renew Sustain Energy Rev. 2016;62:1012–31.

    Article  CAS  Google Scholar 

  93. Marinova N, Valero S, Delgado JL. Organic and perovskite solar cells: working principles, materials and interfaces. J Colloid Interface Sci. 2017;488:373–89.

    Article  CAS  Google Scholar 

  94. Mullassery DJ. Perovskite solar cells. 2019. https://www.researchgate.net/profile/Dawn_John_Mullassery/publication/303541142_An_introduction_to_Perovskite_Solar_Cells_PSCs/links/57471c7308ae14040e28cc4e.pdf. Accessed 14 July 2019.

  95. Zhao Z, Sun W, Li Y, Ye S, Rao H, Gu F, et al. Simplification of device structures for low-cost, high-efficiency perovskite solar cells. J Mater Chem A. 2017;5(10):4756–73.

    Article  CAS  Google Scholar 

  96. Liu X, Cheng Y, Liu C, Zhang T, Zhang N, Zhang S, et al. 20.7% Highly reproducible inverted planar perovskite solar cells with enhanced fill factor and eliminated hysteresis. Energy Environ Sci. 2019;12(7):1622–33.

    Article  CAS  Google Scholar 

  97. Roose B, Wang Q, Abate A. The role of charge selective contacts in perovskite solar cell stability. Adv Energy Mater. 2019;9(5):1803140.

    Google Scholar 

  98. Zhao Y, Zhu K. Solution chemistry engineering toward high-efficiency perovskite solar cells. J Phys Chem Lett. 2014;5(23):4175–86.

    Article  CAS  Google Scholar 

  99. Ke W, Fang G, Wan J, Tao H, Liu Q, Xiong L, et al. Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells. Nat Commun. 2015;6:6700.

    Article  CAS  Google Scholar 

  100. Cojocaru L, Uchida S, Sanehira Y, Nakazaki J, Kubo T, Segawa H. Surface treatment of the compact TiO2 layer for efficient planar heterojunction perovskite solar cells. Chem Lett. 2015;44(5):674–6.

    Article  CAS  Google Scholar 

  101. Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009;131(17):6050–1.

    Article  CAS  Google Scholar 

  102. Di Giacomo F, Zardetto V, D’Epifanio A, Pescetelli S, Matteocci F, Razza S, et al. Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-irradiated TiO2 scaffolds on plastic substrates. Adv Energy Mater. 2015;5(8):1401808.

    Article  CAS  Google Scholar 

  103. Parida B, Singh A, Oh M, Jeon M, Kang J-W, Kim H. Effect of compact TiO2 layer on structural, optical, and performance characteristics of mesoporous perovskite solar cells. Mater Today Commun. 2019;18:176–83.

    Article  CAS  Google Scholar 

  104. Nguyen WH, Bailie CD, Unger EL, McGehee MD. Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro (TFSI) 2 in perovskite and dye-sensitized solar cells. J Am Chem Soc. 2014;136(31):10996–1001.

    Article  CAS  Google Scholar 

  105. Park N-G. Perovskite solar cells: an emerging photovoltaic technology. Mater Today. 2015;18(2):65–72.

    Article  CAS  Google Scholar 

  106. Zhang J, Gao X, Deng Y, Zha Y, Yuan C. Comparison of life cycle environmental impacts of different perovskite solar cell systems. Sol Energy Mater Sol Cells. 2017;166:9–17.

    Article  CAS  Google Scholar 

  107. Schubert S, Meiss J, Müller-Meskamp L, Leo K. Improvement of transparent metal top electrodes for organic solar cells by introducing a high surface energy seed layer. Adv Energy Mater. 2013;3(4):438–43.

    Article  CAS  Google Scholar 

  108. Luo Q, Ma H, Hou Q, Li Y, Ren J, Dai X, et al. All-carbon-electrode-based endurable flexible perovskite solar cells. Adv Funct Mater. 2018;28(11):1706777.

    Article  CAS  Google Scholar 

  109. Zabihi F, Eslamian M. Low-cost transparent graphene electrodes made by ultrasonic substrate vibration-assisted spray coating (SVASC) for thin film devices. Graphene Technol. 2017;2(1–2):1–11.

    Article  Google Scholar 

  110. Shibayama N, Fukumoto S, Sugita H, Kanda H, Ito S. Influence of transparent conductive oxide layer on the inverted perovskite solar cell using PEDOT: pSS for hole transport layer. Mater Res Bull. 2018;106:433–8.

    Article  CAS  Google Scholar 

  111. Lee W, Chuang S, Chen H, Su W, Lin C-H. Exploiting optical properties of P3HT: PCBM films for organic solar cells with semitransparent anode. Thin Solid Films. 2010;518(24):7450–4.

    Article  CAS  Google Scholar 

  112. Zhou P, Bu T, Shi S, Li L, Zhang Y, Ku Z, et al. Efficient and stable mixed perovskite solar cells using P3HT as a hole transporting layer. J Mater Chem C. 2018;6(21):5733–7.

    Article  CAS  Google Scholar 

  113. Miao Y, Du P, Wang Z, Chen Q, Eslamian M. Ultrasonic vibration imposed on nanoparticle-based ZnO film improves the performance of the ensuing perovskite solar cell. Mater Res Express. 2018;5(2):026404.

    Article  CAS  Google Scholar 

  114. Zhang J, Mao W, Hou X, Duan J, Zhou J, Huang S, et al. Solution-processed Sr-doped NiOx as hole transport layer for efficient and stable perovskite solar cells. Sol Energy. 2018;174:1133–41.

    Article  CAS  Google Scholar 

  115. Si H, Liao Q, Zhang Z, Li Y, Yang X, Zhang G, et al. An innovative design of perovskite solar cells with Al2O3 inserting at ZnO/perovskite interface for improving the performance and stability. Nano Energy. 2016;22:223–31.

    Article  CAS  Google Scholar 

  116. Tonui P, Oseni SO, Sharma G, Yan Q, Mola GT. Perovskites photovoltaic solar cells: an overview of current status. Renew Sustain Energy Rev. 2018;91:1025–44.

    Article  CAS  Google Scholar 

  117. Gonzalez-Pedro V, Juarez-Perez EJ, Arsyad W-S, Barea EM, Fabregat-Santiago F, Mora-Sero I, et al. General working principles of CH3NH3PbX3 perovskite solar cells. Nano Lett. 2014;14(2):888–93.

    Article  CAS  Google Scholar 

  118. Lin Q, Armin A, Nagiri RCR, Burn PL, Meredith P. Electro-optics of perovskite solar cells. Nat Photonics. 2015;9(2):106.

    Article  CAS  Google Scholar 

  119. Leguy AM, Hu Y, Campoy-Quiles M, Alonso MI, Weber OJ, Azarhoosh P, et al. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem Mater. 2015;27(9):3397–407.

    Article  CAS  Google Scholar 

  120. Marchioro A, Teuscher J, Friedrich D, Kunst M, Van De Krol R, Moehl T, et al. Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nat Photonics. 2014;8(3):250.

    Article  CAS  Google Scholar 

  121. Kirchartz T, Bisquert J, Mora-Sero I, Garcia-Belmonte G. Classification of solar cells according to mechanisms of charge separation and charge collection. Phys Chem Chem Phys. 2015;17(6):4007–14.

    Article  CAS  Google Scholar 

  122. Ryu S, Seo J, Shin SS, Kim YC, Jeon NJ, Noh JH, et al. Fabrication of metal-oxide-free CH 3 NH 3 PbI 3 perovskite solar cells processed at low temperature. J Mater Chem A. 2015;3(7):3271–5.

    Article  CAS  Google Scholar 

  123. Xiong H, Zabihi F, Wang H, Zhang Q, Eslamian M. Grain engineering by ultrasonic substrate vibration post-treatment of wet perovskite films for annealing-free, high performance, and stable perovskite solar cells. Nanoscale. 2018;10(18):8526–35.

    Article  CAS  Google Scholar 

  124. Wang Q, Chueh CC, Zhao T, Cheng J, Eslamian M, Choy WC, et al. Effects of self-assembled monolayer modification of nickel oxide nanoparticles layer on the performance and application of inverted perovskite solar cells. Chemsuschem. 2017;10(19):3794–803.

    Article  CAS  Google Scholar 

  125. Jiang C-S, Yang M, Zhou Y, To B, Nanayakkara SU, Luther JM, et al. Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential. Nat Commun. 2015;6:8397.

    Article  CAS  Google Scholar 

  126. Marriam I, Wang XP, Tebyetekerwa M, Chen GY, Zabihi F, Pionteck J, et al. A bottom-up approach to design wearable and stretchable smart fibers with organic vapor sensing behaviors and energy storage properties. J Mater Chem A. 2018;6(28):13633–43.

    Article  CAS  Google Scholar 

  127. Shao W, Tebyetekerwa M, Marriam I, Li W, Wu Y, Peng S, et al. Polyester@ MXene nanofibers-based yarn electrodes. J Power Sources. 2018;396:683–90.

    Article  CAS  Google Scholar 

  128. Tebyetekerwa M, Xu Z, Li W, Wang X, Marriam I, Peng S, et al. Surface self-assembly of functional electroactive nanofibers on textile yarns as a facile approach toward super flexible energy storage. ACS Appl Energy Mater. 2017;1(2):377–86.

    Article  CAS  Google Scholar 

  129. Chen G, Chen T, Hou K, Ma W, Tebyetekerwa M, Cheng Y, et al. Robust, hydrophilic graphene/cellulose nanocrystal fiber-based electrode with high capacitive performance and conductivity. Carbon. 2018;127:218–27.

    Article  CAS  Google Scholar 

  130. Wang X, Meng S, Tebyetekerwa M, Li Y, Pionteck J, Sun B, et al. Highly sensitive and stretchable piezoresistive strain sensor based on conductive poly (styrene-butadiene-styrene)/few layer graphene composite fiber. Compos A. 2018;105:291–9.

    Article  CAS  Google Scholar 

  131. Yu S, Wang X, Xiang H, Zhu L, Tebyetekerwa M, Zhu M. Superior piezoresistive strain sensing behaviors of carbon nanotubes in one-dimensional polymer fiber structure. Carbon. 2018;140:1–9.

    Article  CAS  Google Scholar 

  132. Wang X, Meng S, Tebyetekerwa M, Weng W, Pionteck J, Sun B, et al. Nanostructured polyaniline/poly (styrene-butadiene-styrene) composite fiber for use as highly sensitive and flexible ammonia sensor. Synth Met. 2017;233:86–93.

    Article  CAS  Google Scholar 

  133. Yu S, Wang X, Xiang H, Tebyetekerwa M, Zhu M. 1-d polymer ternary composites: Understanding materials interaction, percolation behaviors and mechanism toward ultra-high stretchable and super-sensitive strain sensors. Sci China Mater. 2019;62(7):995–1004.

    Article  CAS  Google Scholar 

  134. Zhang Y, Zhao Y, Ren J, Weng W, Peng H. Advances in wearable fiber-shaped lithium-ion batteries. Adv Mater. 2016;28(22):4524–31.

    Article  CAS  Google Scholar 

  135. Zhou J, Li X, Yang C, Li Y, Guo K, Cheng J, et al. A quasi-solid-state flexible fiber-shaped Li–CO2 battery with low overpotential and high energy efficiency. Adv Mater. 2019;31(3):1804439.

    Article  CAS  Google Scholar 

  136. Liao M, Ye L, Zhang Y, Chen T, Peng H. The Recent advance in fiber-shaped energy storage devices. Adv Electron Mater. 2019;5(1):1800456.

    Article  CAS  Google Scholar 

  137. Wen Z, Yeh M-H, Guo H, Wang J, Zi Y, Xu W, et al. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci Adv. 2016;2(10):e1600097.

    Article  CAS  Google Scholar 

  138. Xie L, Chen X, Wen Z, Yang Y, Shi J, Chen C, et al. Spiral steel wire based fiber-shaped stretchable and tailorable triboelectric nanogenerator for wearable power source and active gesture sensor. Nano Micro Lett. 2019;11(1):39.

    Article  Google Scholar 

  139. Pu X, Hu W, Wang ZL, Wang ZL. Towards wearable self-charging power systems: The intergration of energy-harvesting and storage devices. Small 2018;14:1702817.

    Article  CAS  Google Scholar 

  140. Ren J, Xu Q, Li Y-G. Flexible fiber-shaped energy storage devices: principles, progress, applications and challenges. Flex Print Electron. 2018;3(1):013001.

    Article  CAS  Google Scholar 

  141. Hu X, Li F, Song Y. Wearable power source: A newfangled feasibility for perovskite photovoltaics. ACS Energy Lett. 2019;4(5):1065–72.

    Article  CAS  Google Scholar 

  142. Kahn A. Fermi level, work function and vacuum level. Mater Horizons. 2016;3(1):7–10.

    Article  CAS  Google Scholar 

  143. Chelvayohan M, Mee C. Work function measurements on (110), (100) and (111) surfaces of silver. J Phys C Solid State Phys. 1982;15(10):2305.

    Article  CAS  Google Scholar 

  144. Laird EA, Kuemmeth F, Steele GA, Grove-Rasmussen K, Nygård J, Flensberg K, et al. Quantum transport in carbon nanotubes. Rev Mod Phys. 2015;87(3):703.

    Article  CAS  Google Scholar 

  145. Noel NK, Stranks SD, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A-A, et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ Sci. 2014;7(9):3061–8.

    Article  CAS  Google Scholar 

  146. Dkhissi Y, Weerasinghe H, Meyer S, Benesperi I, Bach U, Spiccia L, et al. Parameters responsible for the degradation of CH3NH3PbI3-based solar cells on polymer substrates. Nano Energy. 2016;22:211–22.

    Article  CAS  Google Scholar 

  147. Noh JH, Im SH, Heo JH, Mandal TN, Seok SI. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 2013;13(4):1764–9.

    Article  CAS  Google Scholar 

  148. Zhou Y, Zhao Y. Chemical stability and instability of inorganic halide perovskites. Energy Environ Sci. 2019;12(5):1495–511.

    Article  CAS  Google Scholar 

  149. Heo S, Seo G, Lee Y, Seol M, Kim SH, Yun DJ, et al. Origins of high performance and degradation in the mixed perovskite solar cells. Adv Mater. 2019;31(8):1805438.

    Article  CAS  Google Scholar 

  150. Qin C, Matsushima T, Klotz D, Fujihara T, Adachi C. The relation of phase-transition effects and thermal stability of planar perovskite solar cells. Adv Sci. 2019;6(1):1801079.

    Article  CAS  Google Scholar 

  151. Motti SG, Meggiolaro D, Barker AJ, Mosconi E, Perini CAR, Ball JM, et al. Controlling competing photochemical reactions stabilizes perovskite solar cells. Nat Photonics. 2019;13:532–9.

    Article  CAS  Google Scholar 

  152. Niu G, Guo X, Wang L. Review of recent progress in chemical stability of perovskite solar cells. J Mater Chem A. 2015;3(17):8970–80.

    Article  CAS  Google Scholar 

  153. Frost JM, Butler KT, Brivio F, Hendon CH, Van Schilfgaarde M, Walsh A. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 2014;14(5):2584–90.

    Article  CAS  Google Scholar 

  154. Oo TT, Debnath S, editors. Application of carbon nanotubes in perovskite solar cells: a review AIP Conference Proceedings. New York: AIP Publishing; 2017.

    Google Scholar 

  155. Yang J, Kelly TL. Decomposition and cell failure mechanisms in lead halide perovskite solar cells. Inorg Chem. 2016;56(1):92–101.

    Article  CAS  Google Scholar 

  156. Shirayama M, Kato M, Miyadera T, Sugita T, Fujiseki T, Hara S, et al. Degradation mechanism of CH3NH3PbI3 perovskite materials upon exposure to humid air. J Appl Phys. 2016;119(11):115501.

    Article  CAS  Google Scholar 

  157. Han Y, Meyer S, Dkhissi Y, Weber K, Pringle JM, Bach U, et al. Degradation observations of encapsulated planar CH 3 NH 3 PbI 3 perovskite solar cells at high temperatures and humidity. J Mater Chem A. 2015;3(15):8139–47.

    Article  CAS  Google Scholar 

  158. Matteocci F, Cinà L, Lamanna E, Cacovich S, Divitini G, Midgley PA, et al. Encapsulation for long-term stability enhancement of perovskite solar cells. Nano Energy. 2016;30:162–72.

    Article  CAS  Google Scholar 

  159. Juarez-Perez EJ, Ono LK, Maeda M, Jiang Y, Hawash Z, Qi Y. Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability. J Mater Chem A. 2018;6(20):9604–12.

    Article  CAS  Google Scholar 

  160. Leijtens T, Eperon GE, Noel NK, Habisreutinger SN, Petrozza A, Snaith HJ. Stability of metal halide perovskite solar cells. Adv Energy Mater. 2015;5(20):1500963.

    Article  CAS  Google Scholar 

  161. Wang D, Wright M, Elumalai NK, Uddin A. Stability of perovskite solar cells. Sol Energy Mater Sol Cells. 2016;147:255–75.

    Article  CAS  Google Scholar 

  162. Hashmi SG, Martineau D, Dar MI, Myllymäki TT, Sarikka T, Ulla V, et al. High performance carbon-based printed perovskite solar cells with humidity assisted thermal treatment. J Mater Chem A. 2017;5(24):12060–7.

    Article  CAS  Google Scholar 

  163. Zhao Y, Wei J, Li H, Yan Y, Zhou W, Yu D, et al. A polymer scaffold for self-healing perovskite solar cells. Nat Commun. 2016;7:10228.

    Article  CAS  Google Scholar 

  164. Habisreutinger SN, Leijtens T, Eperon GE, Stranks SD, Nicholas RJ, Snaith HJ. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 2014;14(10):5561–8.

    Article  CAS  Google Scholar 

  165. Hambsch M, Lin Q, Armin A, Burn PL, Meredith P. Efficient, monolithic large area organohalide perovskite solar cells. J Mater Chem A. 2016;4(36):13830–6.

    Article  CAS  Google Scholar 

  166. Guarnera S, Abate A, Zhang W, Foster JM, Richardson G, Petrozza A, et al. Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer. J Phys Chem Lett. 2015;6(3):432–7.

    Article  CAS  Google Scholar 

  167. Ma B, Gao R, Wang L, Luo F, Zhan C, Li J, et al. Alternating assembly structure of the same dye and modification material in quasi-solid state dye-sensitized solar cell. J Photochem Photobiol A. 2009;202(1):33–8.

    Article  CAS  Google Scholar 

  168. Akbari A, Hashemi J, Mosconi E, De Angelis F, Hakala M. First principles modelling of perovskite solar cells based on TiO 2 and Al 2 O 3: stability and interfacial electronic structure. J Mater Chem A. 2017;5(5):2339–45.

    Article  CAS  Google Scholar 

  169. Pearson AJ, Eperon GE, Hopkinson PE, Habisreutinger SN, Wang JTW, Snaith HJ, et al. Oxygen degradation in mesoporous Al2O3/CH3NH3PbI3-xClx perovskite solar cells: kinetics and mechanisms. Adv Energy Mater. 2016;6(13):1600014.

    Article  CAS  Google Scholar 

  170. Grancini G, Roldán-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, et al. One-year stable perovskite solar cells by 2D/3D interface engineering. Nat Commun. 2017;8:15684.

    Article  CAS  Google Scholar 

  171. Smith IC, Hoke ET, Solis-Ibarra D, McGehee MD, Karunadasa HI. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew Chem. 2014;126(42):11414–7.

    Article  Google Scholar 

  172. Wang Z, Lin Q, Chmiel FP, Sakai N, Herz LM, Snaith HJ. Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat Energy. 2017;2(9):17135.

    Article  CAS  Google Scholar 

  173. Wang R, Mujahid M, Duan Y, Wang ZK, Xue J, Yang Y. A review of perovskites solar cell stability. Adv Funct Mater. 2019:1808843. https://doi.org/10.1002/adfm.201808843.

  174. Chander N, Khan A, Chandrasekhar P, Thouti E, Swami SK, Dutta V, et al. Reduced ultraviolet light induced degradation and enhanced light harvesting using YVO4: Eu3 + down-shifting nano-phosphor layer in organometal halide perovskite solar cells. Appl Phys Lett. 2014;105(3):033904.

    Article  CAS  Google Scholar 

  175. Elghniji K, Atyaoui A, Livraghi S, Bousselmi L, Giamello E, Ksibi M. Synthesis and characterization of Fe3 + doped TiO2 nanoparticles and films and their performance for photocurrent response under UV illumination. J Alloy Compd. 2012;541:421–7.

    Article  CAS  Google Scholar 

  176. Zabihi F, Ahmadian-Yazdi M-R, Eslamian M. Fundamental study on the fabrication of inverted planar perovskite solar cells using two-step sequential substrate vibration-assisted spray coating (2S-SVASC). Nanoscale Res Lett. 2016;11(1):71.

    Article  CAS  Google Scholar 

  177. Greenham N, Moratti S, Bradley D, Friend R, Holmes A. Efficient light-emitting diodes based on polymers with high electron affinities. Nature. 1993;365(6447):628.

    Article  CAS  Google Scholar 

  178. Malinkiewicz O, Yella A, Lee YH, Espallargas GM, Graetzel M, Nazeeruddin MK, et al. Perovskite solar cells employing organic charge-transport layers. Nat Photonics. 2014;8(2):128.

    Article  CAS  Google Scholar 

  179. Docampo P, Ball JM, Darwich M, Eperon GE, Snaith HJ. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun. 2013;4:2761.

    Article  CAS  Google Scholar 

  180. Eslamian M, Zabihi F. Ultrasonic substrate vibration-assisted drop casting (SVADC) for the fabrication of photovoltaic solar cell arrays and thin-film devices. Nanoscale Res Lett. 2015;10(1):462.

    Article  CAS  Google Scholar 

  181. Chikate BV, Sadawarte Y. The factors affecting the performance of solar cell. Int J Comput Appl. 2015;1(1):0975–8887.

    Google Scholar 

  182. Meggiolaro D, Mosconi E, De Angelis F. Mechanism of reversible trap passivation by molecular oxygen in lead-halide perovskites. ACS Energy Lett. 2017;2(12):2794–8.

    Article  CAS  Google Scholar 

  183. Zhao P, Kim BJ, Jung HS. Passivation in perovskite solar cells: a review. Mater Today Energy. 2018;7:267–86.

    Article  Google Scholar 

  184. Giordano F, Abate A, Baena JPC, Saliba M, Matsui T, Im SH, et al. Enhanced electronic properties in mesoporous TiO 2 via lithium doping for high-efficiency perovskite solar cells. Nat Commun. 2016;7:10379.

    Article  CAS  Google Scholar 

  185. Sani F, Shafie S, Lim H, Musa A. Advancement on lead-free organic-inorganic halide perovskite solar cells: a review. Materials. 2018;11(6):1008.

    Article  CAS  Google Scholar 

  186. Mullassery DJ. Perovskite solar cell degradation solutions. 2016https://www.researchgate.net/project/Perovskite-Solar-Cells-Degradation-Solutions. Accessed 21 Sept 2019.

  187. Ahmad K, Ansari SN, Natarajan K, Mobin SM. Design and synthesis of 1D-polymeric chain based [(CH3NH3) 3Bi2Cl9] n perovskite: a new light absorber material for lead free perovskite solar cells. ACS Appl Energy Mater. 2018;1(6):2405–9.

    Article  CAS  Google Scholar 

  188. Hoefler SF, Trimmel G, Rath T. Progress on lead-free metal halide perovskites for photovoltaic applications: a review. Monatshefte für Chem Chem Mon. 2017;148(5):795–826.

    Article  CAS  Google Scholar 

  189. Mustafa G, Komatsu S. Toxicity of heavy metals and metal-containing nanoparticles on plants. Biochim et Biophys Acta (BBA) Proteins Proteomics. 2016;1864(8):932–44.

  190. Pandey G, Madhuri S. Heavy metals causing toxicity in animals and fishes. Res J Anim Vet Fish Sci. 2014;2(2):17–23.

    CAS  Google Scholar 

  191. Singh R, Gautam N, Mishra A, Gupta R. Heavy metals and living systems: an overview. Indian J Pharmacol. 2011;43(3):246.

    Article  CAS  Google Scholar 

  192. Park BW, Philippe B, Zhang X, Rensmo H, Boschloo G, Johansson EM. Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application. Adv Mater. 2015;27(43):6806–13.

    Article  CAS  Google Scholar 

  193. Cortecchia D, Dewi HA, Yin J, Bruno A, Chen S, Baikie T, et al. Lead-free MA2CuCl x Br 4–x hybrid perovskites. Inorg Chem. 2016;55(3):1044–52.

    Article  CAS  Google Scholar 

  194. Hao F, Stoumpos CC, Cao DH, Chang RP, Kanatzidis MG. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat Photonics. 2014;8(6):489.

    Article  CAS  Google Scholar 

  195. Chatterjee S, Pal AJ. Tin (IV) substitution in (CH3NH3) 3Sb2I9: toward low-band-gap defect-ordered hybrid perovskite solar cells. ACS Appl Mater Interfaces. 2018;10(41):35194–205.

    Article  CAS  Google Scholar 

  196. Abate A. Perovskite solar cells go lead free. Joule. 2017;1(4):659.

    Article  CAS  Google Scholar 

  197. Liao W, Zhao D, Yu Y, Shrestha N, Ghimire K, Grice CR, et al. Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. J Am Chem Soc. 2016;138(38):12360–3.

    Article  CAS  Google Scholar 

  198. Kumar MH, Dharani S, Leong WL, Boix PP, Prabhakar RR, Baikie T, et al. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv Mater. 2014;26(41):7122–7.

    Article  CAS  Google Scholar 

  199. Liao W, Zhao D, Yu Y, Grice CR, Wang C, Cimaroli AJ, et al. Lead‐free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv Mater. 2016;28(42):9333–40.

  200. Zuo C, Ding L. Lead-free perovskite materials (NH4) 3Sb2IxBr 9–x. Angew Chem Int Ed. 2017;56(23):6528–32.

    Article  CAS  Google Scholar 

  201. Farhadi B, Marriam I, Yang S, Zhang H, Tebyetekerwa M, Zhu M, et al. Highly efficient photovoltaic energy storage hybrid system based on ultrathin carbon electrodes designed for a portable and flexible power source. J Power Sources. 2019;422:196–207.

    Article  CAS  Google Scholar 

  202. Sangid MD, Maier HJ, Sehitoglu H. The role of grain boundaries on fatigue crack initiation–an energy approach. Int J Plast. 2011;27(5):801–21.

    Article  Google Scholar 

  203. Kaldor JM, James DL, Marschner S. Simulating knitted cloth at the yarn level. ACM Trans Graph (TOG). 2008;27(3):65.

    Article  Google Scholar 

  204. Choi W, Powell NB. Three dimensional seamless garment knitting on V-bed flat knitting machines. J Text Appar Technol Manag. 2005;4(3):1–33.

    Google Scholar 

  205. Ray SC. Fundamentals and advances in knitting technology. 2012. https://books.google.com/books?hl=en&lr=&id=zkf7CAAAQBAJ&oi=fnd&pg=PP1&dq=knitting+on+V-bed+lat+knitting+machinRay+SC.+Fundamentals+and+advances+in+knitting+technology.+WPI+Publishing%3B+2012.&ots=b8JM926BOt&sig=se6igJcwqDZhyYT8neCSGT4HwBk. Accessed 03 June 2019.

  206. De Araújo M, Fangueiro R, Hong H. Modelling and simulation of the mechanical behaviour of weft-knitted fabrics for technical applications. Autex Res J. 2004;4(2). http://www.autexrj.com/cms/zalaczone_pliki/3-04-2.pdf. Accessed 12 May 2019.

  207. Adanur S. Handbook of weaving. Boca Raton: CRC Press; 2000.

    Book  Google Scholar 

  208. Hampel CA. Encyclopedia of the chemical elements. 1968.https://www.worldcat.org/title/encyclopedia-of-the-chemical-elements/oclc/449569. Accessed 06 May 2019.

  209. Yu M-F, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science. 2000;287(5453):637–40.

    Article  CAS  Google Scholar 

  210. Nowak AS, Collins KR. Reliability of structures. Boca Raton: CRC Press; 2012 .

    Google Scholar 

  211. Zheng X, Deng Y, Chen B, Wei H, Xiao X, Fang Y, et al. Dual functions of crystallization control and defect passivation enabled by sulfonic zwitterions for stable and efficient perovskite solar cells. Adv Mater. 2018;30(52):1803428.

    Article  CAS  Google Scholar 

  212. Ball JM, Petrozza A. Defects in perovskite-halides and their effects in solar cells. Nat Energy. 2016;1(11):16149.

    Article  CAS  Google Scholar 

  213. Uratani H, Yamashita K. Charge carrier trapping at surface defects of perovskite solar cell absorbers: a first-principles study. J Phys Chem Lett. 2017;8(4):742–6.

    Article  CAS  Google Scholar 

  214. Liu N, Du Q, Yin G, Liu P, Li L, Xie H, et al. Extremely low trap-state energy level perovskite solar cells passivated using NH 2-POSS with improved efficiency and stability. J Mater Chem A. 2018;6(16):6806–14.

    Article  CAS  Google Scholar 

  215. Liu R, Liu Y, Zou H, Song T, Sun B. Integrated solar capacitors for energy conversion and storage. Nano Res. 2017;10(5):1545–59.

    Article  CAS  Google Scholar 

  216. Liang J, Zhu G, Lu Z, Zhao P, Wang C, Ma Y, et al. Integrated perovskite solar capacitors with high energy conversion efficiency and fast photo-charging rate. J Mater Chem A. 2018;6(5):2047–52.

    Article  CAS  Google Scholar 

  217. Du P, Hu X, Yi C, Liu HC, Liu P, Zhang HL, et al. Self-powered electronics by integration of flexible solid-state graphene-based supercapacitors with high performance perovskite hybrid solar cells. Adv Funct Mater. 2015;25(16):2420–7.

    Article  CAS  Google Scholar 

  218. Varma JS, Sambath Kumar K, Seal S, Rajaraman S, Thomas J. Fiber‐type solar cells, nanogenerators, batteries, and supercapacitors for wearable applications. Adv Sci. 2018;5(9):1800340.

  219. Ding R, Zhang X, Chen G, Wang H, Kishor R, Xiao J, et al. High-performance piezoelectric nanogenerators composed of formamidinium lead halide perovskite nanoparticles and poly (vinylidene fluoride). Nano Energy. 2017;37:126–35.

    Article  CAS  Google Scholar 

  220. Hu G, Guo W, Yu R, Yang X, Zhou R, Pan C, et al. Enhanced performances of flexible ZnO/perovskite solar cells by piezo-phototronic effect. Nano Energy. 2016;23:27–33.

    Article  CAS  Google Scholar 

  221. Luo C, Hu S, Xia M, Li P, Hu J, Li G, et al. A flexible lead-free BaTiO3/PDMS/C composite nanogenerator as a piezoelectric energy harvester. Energy Technol. 2018;6(5):922–7.

    Article  CAS  Google Scholar 

  222. Sultana A, Sadhukhan P, Alam MM, Das S, Middya TR, Mandal D. Organo-lead halide perovskite induced electroactive β-phase in porous PVDF films: an excellent material for photoactive piezoelectric energy harvester and photodetector. ACS Appl Mater Interfaces. 2018;10(4):4121–30.

    Article  CAS  Google Scholar 

  223. Peng M, Dong B, Cai X, Wang W, Jiang X, Wang Y, et al. Organic dye-sensitized photovoltaic fibers. Sol Energy. 2017;150:161–5.

    Article  CAS  Google Scholar 

  224. Peng M, Yan K, Hu H, Shen D, Song W, Zou D. Efficient fiber shaped zinc bromide batteries and dye sensitized solar cells for flexible power sources. J Mater Chem C. 2015;3(10):2157–65.

    Article  CAS  Google Scholar 

  225. Chen L, Zhou Y, Dai H, Yu T, Liu J, Zou Z. One-step growth of CoNi2S4 nanoribbons on carbon fibers as platinum-free counter electrodes for fiber-shaped dye-sensitized solar cells with high performance: polymorph-dependent conversion efficiency. Nano Energy. 2015;11:697–703.

    Article  CAS  Google Scholar 

  226. Song W, Wang H, Liu G, Peng M, Zou D. Improving the photovoltaic performance and flexibility of fiber-shaped dye-sensitized solar cells with atomic layer deposition. Nano Energy. 2016;19:1–7.

    Article  CAS  Google Scholar 

  227. Peng M, Hou S, Wu H, Yang Q, Cai X, Yu X, et al. Integration of fiber dye-sensitized solar cells with luminescent solar concentrators for high power output. J Mater Chem A. 2014;2(4):926–32.

    Article  CAS  Google Scholar 

  228. Liu G, Peng M, Song W, Wang H, Zou D. An 8.07% efficient fiber dye-sensitized solar cell based on a TiO2 micron-core array and multilayer structure photoanode. Nano Energy. 2015;11:341–7.

    Article  CAS  Google Scholar 

  229. Sugathan V, John E, Sudhakar K. Recent improvements in dye sensitized solar cells: a review. Renew Sustain Energy Rev. 2015;52:54–64.

    Article  CAS  Google Scholar 

  230. Labat F, Le Bahers T, Ciofini I, Adamo C. First-principles modeling of dye-sensitized solar cells: challenges and perspectives. Acc Chem Res. 2012;45(8):1268–77.

    Article  CAS  Google Scholar 

  231. Labat F, Ciofini I, Hratchian HP, Frisch M, Raghavachari K, Adamo C. First principles modeling of eosin-loaded ZnO films: a step toward the understanding of dye-sensitized solar cell performances. J Am Chem Soc. 2009;131(40):14290–8.

    Article  CAS  Google Scholar 

  232. Lin Y, Dong S, Li Z, Zheng W, Yang J, Liu A, et al. Energy-effectively printed all-polymer solar cells exceeding 8.61% efficiency. Nano Rnergy. 2018;46:428–35.

    Article  CAS  Google Scholar 

  233. Li G, Zhu R, Yang Y. Polymer solar cells. Nat Photonics. 2012;6(3):153.

    Article  CAS  Google Scholar 

  234. Wang K, Yi C, Liu C, Hu X, Chuang S, Gong X. Effects of magnetic nanoparticles and external magnetostatic field on the bulk heterojunction polymer solar cells. Sci Rep. 2015;5:9265.

    Article  CAS  Google Scholar 

  235. Zabihi F, Chen Q, Xie Y, Eslamian M. Fabrication of efficient graphene-doped polymer/fullerene bilayer organic solar cells in air using spin coating followed by ultrasonic vibration post treatment. Superlattices Microstruct. 2016;100:1177–92.

    Article  CAS  Google Scholar 

  236. Swick SM, Zhu W, Matta M, Aldrich TJ, Harbuzaru A, Navarrete JTL, et al. Closely packed, low reorganization energy π-extended postfullerene acceptors for efficient polymer solar cells. Proc Natl Acad Sci. 2018;115(36):E8341–8.

    Article  CAS  Google Scholar 

  237. Xu X, Fukuda K, Karki A, Park S, Kimura H, Jinno H, et al. Thermally stable, highly efficient, ultraflexible organic photovoltaics. Proc Natl Acad Sci. 2018;115(18):4589–94.

    Article  CAS  Google Scholar 

  238. Lee MR, Eckert RD, Forberich K, Dennler G, Brabec CJ, Gaudiana RA. Solar power wires based on organic photovoltaic materials. Science. 2009;324(5924):232–5.

    Article  CAS  Google Scholar 

  239. Liu D, Zhao M, Li Y, Bian Z, Zhang L, Shang Y, et al. Solid-state, polymer-based fiber solar cells with carbon nanotube electrodes. ACS Nano. 2012;6(12):11027–34.

    Article  CAS  Google Scholar 

  240. Tripathi B, Yadav P, Kumar M. Charge transfer and recombination kinetics in dye-sensitized solar cell using static and dynamic electrical characterization techniques. Sol Energy. 2014;108:107–16.

    Article  CAS  Google Scholar 

  241. Bellan LM, Craighead HG. Applications of controlled electrospinning systems. Polym Adv Technol. 2011;22(3):304–9.

    Article  CAS  Google Scholar 

  242. Lee C, Jeon Y, Hata S, Park J-I, Akiyoshi R, Saito H, et al. Three-dimensional arrangements of perovskite-type oxide nano-fiber webs for effective soot oxidation. Appl Catal B. 2016;191:157–64.

    Article  CAS  Google Scholar 

  243. Wang B, Song J, Tan X, Meng B, Liu J, Liu S. Reinforced perovskite hollow fiber membranes with stainless steel as the reactive sintering aid for oxygen separation. J Membr Sci. 2016;502:151–7.

    Article  CAS  Google Scholar 

  244. Fang F, Feng N, Wang L, Meng J, Liu G, Zhao P, et al. Fabrication of perovskite-type macro/mesoporous La1-xKxFeO3-δ nanotubes as an efficient catalyst for soot combustion. Appl Catal B. 2018;236:184–94.

    Article  CAS  Google Scholar 

  245. Zhang Y-Q, Tao H-B, Liu J, Sun Y-F, Chen J, Hua B, et al. A rational design for enhanced oxygen reduction: strongly coupled silver nanoparticles and engineered perovskite nanofibers. Nano Energy. 2017;38:392–400.

    Article  CAS  Google Scholar 

  246. Jin S, Choi WS, Baek S-W, Shin TH, Park J-Y, Kim JH. Electrochemical properties of electrospinning-fabricated layered perovskite used in cathode materials for a low temperature-operating solid oxide fuel cell. Thin Solid Films. 2018;660:663–71.

    Article  CAS  Google Scholar 

  247. Deng H, Mao Z, Xu H, Zhang L, Zhong Y, Sui X. Synthesis of fibrous LaFeO3 perovskite oxide for adsorption of Rhodamine B. Ecotoxicol Environ Saf. 2019;168:35–44.

    Article  CAS  Google Scholar 

  248. Wang F, Mai Y-W, Wang D, Ding R, Shi W. High quality barium titanate nanofibers for flexible piezoelectric device applications. Sens Actuators A. 2015;233:195–201.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Key Research and Development Program of China (2016YFA0201702/2016YFA0201700), the Shanghai Natural Science Foundation (19ZR1400900), the Science and Technology Commission of Shanghai Municipality (16JC1400700), the Fundamental Research Funds for the Central Universities (Grant No. 2232018A3-01), the Program for Innovative Research Team at the University of Ministry of Education of China (IRT_16R13), the International Joint Laboratory for Advanced Fiber and Low-dimension Materials (18520750400), and the (No. 111-2-04). R. J. acknowledges the Flagship Leap 3 (RDU 172201) of Universiti Malaysia Pahang (http://ump.edu.my). M. T. also acknowledges the research support of the Australian Government Research Training Program (RTP) Scholarship at the Australian National University, Canberra.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fatemeh Zabihi or Shengyuan Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balilonda, A., Li, Q., Tebyetekerwa, M. et al. Perovskite Solar Fibers: Current Status, Issues and Challenges. Adv. Fiber Mater. 1, 101–125 (2019). https://doi.org/10.1007/s42765-019-00011-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-019-00011-0

Keywords

Navigation