Skip to main content
Log in

Coexistence of Competing Species for Intermediate Dispersal Rates in a Reaction–Diffusion Chemostat Model

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

A diffusive chemostat model with two competing species and one nutrient is revisited in this paper. It is shown that at large diffusion rate, both species are washed out, while competition exclusion occurs at small diffusion rate. This implies that a stable coexistence only occurs at intermediate diffusion rate, and an explicit way of determining parameter ranges which support a stable coexistence steady state is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ackleh, A.S., Deng, K., Wu, Y.-X.: Competitive exclusion and coexistence in a two-strain pathogen model with diffusion. Math. Biosci. Eng. 13(1), 1–18 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Ballyk, M., Dung, L., Jones, D.A., Smith, H.L.: Effects of random motility on microbial growth and competition in a flow reactor. SIAM J. Appl. Math. 59(2), 573–596 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Berestycki, H., Nirenberg, L., Varadhan, S.R.S.: The principal eigenvalue and maximum principle for second-order elliptic operators in general domains. Commun. Pure Appl. Math. 47(1), 47–92 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Butler, G.J., Hsu, S.-B., Waltman, P.: A mathematical model of the chemostat with periodic washout rate. SIAM J. Appl. Math. 45(3), 435–449 (1985)

    MathSciNet  MATH  Google Scholar 

  5. Butler, G.J., Wolkowicz, G.S.K.: A mathematical model of the chemostat with a general class of functions describing nutrient uptake. SIAM J. Appl. Math. 45(1), 138–151 (1985)

    MathSciNet  MATH  Google Scholar 

  6. Castella, F., Madec, S.: Coexistence phenomena and global bifurcation structure in a chemostat-like model with species-dependent diffusion rates. J. Math. Biol. 68(1–2), 377–415 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Castella, F., Madec, S., Lagadeuc, Y.: Global behavior of n competing species with strong diffusion: diffusion leads to exclusion. Appl. Anal. 95(2), 1–32 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8(2), 321–340 (1971)

    MathSciNet  MATH  Google Scholar 

  9. Droop, M .R.: Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in monochrysis lutheri. J. Mar. Biol. Assoc. UK 48(03), 689–733 (1968)

    Google Scholar 

  10. Droop, M.R.: Some thoughts on nutrient limitation in algae1. J. Phycol. 9(3), 264–272 (1973)

    Google Scholar 

  11. Du, Y.-H., Hsu, S.-B.: On a nonlocal reaction–diffusion problem arising from the modeling of phytoplankton growth. SIAM J. Math. Anal. 42(3), 1305–1333 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Ducrot, A., Madec, S.: Singularly perturbed elliptic system modeling the competitive interactions for a single resource. Math. Models Methods Appl. Sci. 23(11), 1939–1977 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Dung, L., Smith, Hal L.: A parabolic system modeling microbial competition in an unmixed bio-reactor. J. Differ. Equ. 130(1), 59–91 (1996)

    MathSciNet  MATH  Google Scholar 

  14. Dung, L., Smith, H.L., Waltman, P.: Growth in the unstirred chemostat with different diffusion rates. In: Ruan, S., Wolkowicz, G.S.K., Wu, J. (eds.) Differential Equations with Applications to Biology (Halifax, NS, 1997), Fields Institute Communications, vol. 21, pp. 131–142. American Mathematical Society, Providence (1999)

  15. He, X.-Q., Ni, W.-M.: Global dynamics of the Lotka–Volterra competition–diffusion system: diffusion and spatial heterogeneity I. Commun. Pure Appl. Math. 69(5), 981–1014 (2016)

    MathSciNet  MATH  Google Scholar 

  16. He, X.-Q., Ni, W.-M.: Global dynamics of the Lotka–Volterra competition–diffusion system with equal amount of total resources, II. Calc. Var. Partial Differ. Equ. 55(2), 25 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Herbert, D., Elsworth, R., Telling, R.C.: The continuous culture of bacteria; a theoretical and experimental study. Microbiology 14(3), 601–622 (1956)

    Google Scholar 

  18. Hess, P.: Periodic Parabolic Boundary Value Problems and Positivity. Longman Scientific & Technical, London (1991)

    MATH  Google Scholar 

  19. Hsu, S.-B.: Limiting behavior for competing species. SIAM J. Appl. Math. 34(4), 760–763 (1978)

    MathSciNet  MATH  Google Scholar 

  20. Hsu, S.-B., Hubbell, S., Waltman, P.: A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms. SIAM J. Appl. Math. 32(2), 366–383 (1977)

    MathSciNet  MATH  Google Scholar 

  21. Hsu, S.-B., Jiang, J., Wang, F.-B.: On a system of reaction–diffusion equations arising from competition with internal storage in an unstirred chemostat. J. Differ. Equ. 248(10), 2470–2496 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Hsu, S.-B., Shi, J., Wang, F.-B.: Further studies of a reaction–diffusion system for an unstirred chemostat with internal storage. Discrete Contin. Dyn. Syst. Ser. B 19(10), 3169–3189 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Hsu, S.-B., Smith, H.L., Waltman, P.: Dynamics of competition in the unstirred chemostat. Can. Appl. Math Q. 2, 461–483 (1994)

    MathSciNet  MATH  Google Scholar 

  24. Hsu, S.B., Smith, H.L., Waltman, P.: Competitive exclusion and coexistence for competitive systems on ordered Banach spaces. Trans. Am. Math. Soc. 348(10), 4083–4094 (1996)

    MathSciNet  MATH  Google Scholar 

  25. Hsu, S.-B., Waltman, P.: On a system of reaction–diffusion equations arising from competition in an unstirred chemostat. SIAM J. Appl. Math. 53(4), 1026–1044 (1993)

    MathSciNet  MATH  Google Scholar 

  26. Lam, K.-Y., Ni, W.-M.: Uniqueness and complete dynamics in heterogeneous competition–diffusion systems. SIAM J. Appl. Math. 72(6), 1695–1712 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Loreau, M., Mouquet, N., Gonzalez, A.: Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl. Acad. Sci. 100(22), 12765–12770 (2003)

    Google Scholar 

  28. Lou, Y.: On the effects of migration and spatial heterogeneity on single and multiple species. J. Differ. Equ. 223(2), 400–426 (2006)

    MathSciNet  MATH  Google Scholar 

  29. Mei, L.-F., Zhang, X.-Y.: Existence and nonexistence of positive steady states in multi-species phytoplankton dynamics. J. Differ. Equ. 253(7), 2025–2063 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Mouquet, N., Loreau, M.: Coexistence in metacommunities: the regional similarity hypothesis. Am. Nat. 159(4), 420–426 (2002)

    Google Scholar 

  31. Mouquet, N., Loreau, M.: Community patterns in source-sink metacommunities. Am. Nat. 162(5), 544–557 (2003)

    Google Scholar 

  32. Nie, H., Lou, Y., Wu, J.-H.: Competition between two similar species in the unstirred chemostat. Discrete Contin. Dyn. Syst. Ser. B 21(2), 621–639 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Nie, H., Wu, J.-H.: Uniqueness and stability for coexistence solutions of the unstirred chemostat model. Appl. Anal. 89(7), 1141–1159 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Nie, H., Xie, W., Wu, J.-H.: Uniqueness of positive steady state solutions to the unstirred chemostat model with external inhibitor. Commun. Pure Appl. Anal. 12(3), 1279–1297 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Novick, A., Szilard, L.: Description of the chemostat. Science 112(2920), 715–716 (1950)

    Google Scholar 

  36. Novick, A., Szilard, L.: Experiments with the chemostat on spontaneous mutations of bacteria. Proc. Natl. Acad. Sci. 36(12), 708–719 (1950)

    Google Scholar 

  37. Shi, J.-P.: Persistence and bifurcation of degenerate solutions. J. Funct. Anal. 169(2), 494–531 (1999)

    MathSciNet  MATH  Google Scholar 

  38. Shi, J.-P., Wang, X.-F.: On global bifurcation for quasilinear elliptic systems on bounded domains. J. Differ. Equ. 246(7), 2788–2812 (2009)

    MathSciNet  MATH  Google Scholar 

  39. Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, vol. 41. American Mathematical Society, Providence (1995)

    Google Scholar 

  40. Smith, H.L., Waltman, P.: Competition for a single limiting resource in continuous culture: the variable-yield model. SIAM J. Appl. Math. 54(4), 1113–1131 (1994)

    MathSciNet  MATH  Google Scholar 

  41. Smith, H.L., Waltman, P.: The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge Studies in Mathematical Biology, vol. 13. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  42. So, J.W.-H., Waltman, P.: A nonlinear boundary value problem arising from competition in the chemostat. Appl. Math. Comput. 32(2–3), 169–183 (1989)

    MathSciNet  MATH  Google Scholar 

  43. Taylor, P.A., Williams, J.L.: Theoretical studies on the coexistence of competing species under continuous-flow conditions. Can. J. Microbiol. 21(1), 90–98 (1975)

    Google Scholar 

  44. Tuncer, N., Martcheva, M.: Analytical and numerical approaches to coexistence of strains in a two-strain SIS model with diffusion. J. Biol. Dyn. 6(2), 406–439 (2012)

    MathSciNet  Google Scholar 

  45. Venail, P.A., MacLean, R.C., Bouvier, T., Brockhurst, M.A., Hochberg, M.E., Mouquet, N.: Diversity and productivity peak at intermediate dispersal rate in evolving metacommunities. Nature 452(7184), 210–214 (2008)

    Google Scholar 

  46. Wolkowicz, G.S.K., Lu, Z.-Y.: Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates. SIAM J. Appl. Math. 52(1), 222–233 (1992)

    MathSciNet  MATH  Google Scholar 

  47. Wu, J.-H., Nie, H., Wolkowicz, G.S.K.: A mathematical model of competition for two essential resources in the unstirred chemostat. SIAM J. Appl. Math. 65(1), 209–229 (2004)

    MathSciNet  MATH  Google Scholar 

  48. Wu, J.-H., Nie, H., Wolkowicz, G.S.K.: The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat. SIAM J. Math. Anal. 38(6), 1860–1885 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for his valuable comments which have led to a significant improvement in the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingfu Zou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported by NSF of USA (Grant No. DMS-1313243), by a Fields Institute Postdoctoral Fellowship and by NSERC of Canada (Grant No. RGPIN-2016-04665).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Wu, Y. & Zou, X. Coexistence of Competing Species for Intermediate Dispersal Rates in a Reaction–Diffusion Chemostat Model. J Dyn Diff Equat 32, 1085–1112 (2020). https://doi.org/10.1007/s10884-019-09763-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-019-09763-0

Keywords

Mathematics Subject Classification

Navigation