Skip to main content
Log in

The effect of indium doping on photovoltaic properties of chemically synthesized zinc oxide thin-film electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Photovoltaic (PV) performance of chemically synthesized indium-doped zinc oxide (IZO) nanorod electrodes has been investigated by photocurrent density-voltage (J-V). The indium (In) concentration was varied from 2 to 6 at.% for IZO. The J-V measurements as performed under a dark condition and a simulated white light of 80 mW/cm2 confirmed increase in PV performance with the IZO electrodes, making a peak with the 4 at.% In concentration. The investigated properties of the synthesized In-doped ZnO nanorod electrodes (structural and optical) strongly agreed with the PV results and well support the enhanced PV performance of the IZO electrodes. This clearly indicates that IZO electrodes would be preferred against undoped ones in PV solar cell application.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shinde NM, Lokhande CD, Kim JH, Moon JH (2012) Low cost and large area novel chemical synthesis of Cu2ZnSnS4 (CZTS) thin films. J Photochem Photobiol A 235:14–20

    Article  CAS  Google Scholar 

  2. Tyona MD, Jambure SB, Lokhande CD, Banpurkar AG, Osuji RU, Ezema FI (2018) Dye-sensitized solar cells based on Al-doped ZnO photoelectrodes sensitized with rhodamine. Mater Lett 220:281–284

    Article  CAS  Google Scholar 

  3. Andrew B, Ngwe Z, Keith RM, Kean F (2013) High efficiency silicon solar cells. Energy Procedia 33:1–10

    Article  Google Scholar 

  4. Jambure SB, Patil SJ, Deshpande AR, Lokhande CD (2014) A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films. Mater Res Bull 49:420–425

    Article  CAS  Google Scholar 

  5. de Souza Lucas FW, Zakutayev A (2018) Research Update: Emerging chalcostibite absorbers for thin-film solar cells. Apl Mater 6:084501–084509

    Article  Google Scholar 

  6. Zong-Liang T, Chien-Hung C, Chun-Guey W (2015) Surface engineering of ZnO thin film for high efficiency planar perovskite solar cells. Sci Rep 5:13211–13219

    Article  Google Scholar 

  7. Mukhamedshina D, Mit K, Chuchvaga N, Tokmoldin N (2017) Fabrication and study of sol-gel ZnO films for use in Si-based heterojunction photovoltaic devices. Mod Electron Mater 3:158–161

    Article  Google Scholar 

  8. Babar H, Aasma A, Taj MK, Michael C, Bahman Z (2019) Electron affinity and bandgap optimization of zinc oxide for improved performance of ZnO/Si heterojunction solar cell using PC1D simulations. Electronics 8:238–246

    Article  Google Scholar 

  9. Vladimirov M, Kühn TG, May F, Weitz RT (2018) Energy barriers at grain boundaries dominate charge carrier transport in an electron-conductive organic semiconductor. Sci Rep 8:14868–14878

    Article  CAS  Google Scholar 

  10. Rau U, Taretto K, Siebentritt S (2009) Grain boundaries in Cu(In,Ga)(Se, S)2 thin-film solar cells. Appl Phys A Mater Sci Process 96:221–234

    Article  CAS  Google Scholar 

  11. Tejas SS, Cristina M, Lidón GE, Ávila J, Michele S, Henk JB, Koster LJA (2017) Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions. ACS Energy Lett 2:1214–1222

    Article  Google Scholar 

  12. Yu X, Yu X, Zhang J, Zhang D, Chen L, Long Y (2017) Facile boosting light-scattering of ZnO nanorods in broadband spectrum region. Opt Mater 66:131–136

    Article  CAS  Google Scholar 

  13. Tyona MD, Osuji RU, Lokhande CD, Ezema FI (2018) Photovoltaic properties of aluminum doped zinc oxide electrodes based on variation of aluminum impurities in the semiconductor. J Mater Phys Chem 6:9–16

    CAS  Google Scholar 

  14. Machado G, Guerra DN, Leinen D, Ramos-Barrado JR, Marotti RE, Dalchiele EA (2005) Indium doped zinc oxide thin films obtained by electrodeposition. Thin Solid Films 490:124–131

    Article  CAS  Google Scholar 

  15. Biswal R, Maldonado A, Vega-Pérez J, Acosta DR, Olvera MDL (2014) Indium doped zinc oxide thin films deposited by ultrasonic chemical spray technique, starting from zinc acetylacetonate and indium chloride. Mater 7:5038–5046

    Article  CAS  Google Scholar 

  16. Wen-Wu Z, Fa-Min L, Lu-Gang C, Xue-Quan L, Yi L (2011) Effect of growth time on the structure, Raman shift and photoluminescence of Al and Sb codoped ZnO nanorod ordered array thin films. Appl Surf Sci 257:9318–9322

    Article  Google Scholar 

  17. Yu J, Yuan Z, Han S, Ma Z (2012) Size-selected growth of transparent well-aligned ZnO nanowire arrays. Nanoscale Res Lett 7:517–525

    Article  Google Scholar 

  18. Wang H, Xie C (2006) Controlled fabrication of nanostructured ZnO particles and porous thin films via a modified chemical bath deposition method. J Cryst Growth 291:187–196

    Article  CAS  Google Scholar 

  19. Tyona MD, Osuji RU, Asogwa PU, Jambure SB, Ezema FI (2017) Structural modification and band gap tailoring of zinc oxide thin films using copper impurities. J Solid State Electrochem 21:2629–2638

    Article  CAS  Google Scholar 

  20. Hu Z, Jiao B, Zhang J, Zhang X, Zhao Y (2011) Indium-doped zinc oxide thin films as effective anodes of organic photovoltaic devices. Int J Photoenergy 2011:1–5

    Article  Google Scholar 

  21. Kim MS, Yim KG, Kim S, Nam G, Lee DY, Kim JS, Kim JS, Leem JY (2012) Growth and characterization of indium-doped zinc oxide thin films prepared by sol–gel method. Acta Phys Pol A 121:217–220

    Article  CAS  Google Scholar 

  22. Radhouane BHT, Abdellatif BM (2014) Sol-gel processed indium-doped zinc oxide thin films and their electrical and optical properties. New J Glass Ceramics 4:55–65

    Article  Google Scholar 

  23. Jongnavakit P, Amornpitoksuk P, Suwanboon S, Ndiege N (2012) Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol-gel method. Appl Surf Sci 258:8192–8198

    Article  CAS  Google Scholar 

  24. Dom R, Lijin RB, Kim HG, Borse PH (2013) Enhanced solar photoelectrochemical conversion efficiency of ZnO:cu electrodes for water-splitting application. Inter J Photoenergy 2013:9–20

    Article  Google Scholar 

  25. Girjesh S, Shrivastava SB, Deepti J, Swati P, Shripathi T, Ganesan V (2010) Effect of indium doping on zinc oxide films prepared by chemical spray pyrolysis technique. Bull Mater Sci 33:581–587

    Article  Google Scholar 

  26. Susetyo P, Fauzia V, Sugihartono I (2017) The role of Mg dopant on the morphological, structural and optical properties of Mg doped zinc oxide grown through hydrothermal method. J Phys Conf Ser 817:012007

    Article  Google Scholar 

  27. Hao Y, Yang M, Li W, Qiao X, Zhang L, Cai S (2000) A photoelectrochemical solar cell based on ZnO/dye/polypyrrole film electrode as photoanode. Sol Energy Mater Sol Cells 60:349–359

    Article  CAS  Google Scholar 

  28. Kim JD, Honma I (2004) Synthesis and proton conducting properties of zirconia bridged hydrocarbon/phosphotungstic acid hybrid materials. Electrochim Acta 49:3179–3318

    Article  CAS  Google Scholar 

  29. Li-Ping P, A-Ling H, Liang F, Xiao-Fei Y (2015) Structure and properties of indium-doped ZnO films prepared by RF magnetron sputtering under different pressures. Rare Metals:1–5. https://doi.org/10.1007/s12598-015-0661-8

  30. Apiwattanadej T, Sritongkham P, Mohammed WS (2015) The scattering pattern study of zinc oxide nanorod on silica glass substrate for protein immobilization Platform. Int J Adv Sci Eng Technol 3:8–83

    Google Scholar 

  31. Rathore N, Sarkar SK (2014) Effect of different anions on ZnO morphology. Energy Procedia 54:771–776

    Article  CAS  Google Scholar 

  32. Tyona MD, Osuji RU, Ezema FI, Jambure SB, Lokhande CD (2016) Enhanced photoelectrochemical solar cells based on natural dye-sensitized Al-doped zinc oxide electrodes. Adv Appl Sci Res 6:7–20

    Google Scholar 

  33. Salh A, Hyeonwook P, Woo KK (2019) Optimization of intrinsic ZnO thickness in Cu(In,Ga)Se2-based thin film solar cells. Materials 12:1365–1381

    Article  Google Scholar 

  34. Sun RD, Nakajima A, Fujushima A, Watanabe T, Hashimoto K (2001) Photoinduced surface wettability conversion of ZnO and TiO2 thin films. J Phys Chem B 105:1984–1991

    Article  CAS  Google Scholar 

  35. Hyeonseok L, Yu-Ting H, Mark WH, Shien-Ping F (2018) Engineered optical and electrical performance of rf–sputtered undoped nickel oxide thin films for inverted perovskite solar cells. Sci Rep 8:5590–5599

    Article  Google Scholar 

  36. Sun H, Luo M, Weng W, Cheng K, Du P, Shen G, Han G (2008) Room-temperature preparation of ZnO M nanosheets grown on Si substrates by a seed-layer assisted solution route. Nanotechnology 19:125603–125610

    Article  Google Scholar 

  37. Alaa AFH, Wan Zuha WH, Suhaidi S, Mohd NH, Shyam SP (2018) A review of transparent solar photovoltaic technologies. Renew Sust Energ Rev 94:779–791

    Article  Google Scholar 

  38. Shinde NM, Dubal DP, Dhawale DS, Lokhande CD, Kim JH, Moon JH (2012) Room temperature novel chemical synthesis of Cu2ZnSnS4 (CZTS) absorbing layer for photovoltaic application. Mater Res Bull 47:302–307

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.D. Tyona appreciates Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur, India for Laboratory facilities. We thank Benue State University, Makurdi, Nigeria for funding. F.I greatly acknowledged TETFUND for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Tyona.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research Highlights

• Highly oriented peaks were seen in the c-axis (002) for every sample

•In doping induces tremendous red-shift in absorption edges up to 540 nm

•In doping causes lowering of band gap energy from 3.15 to 2.92 eV

•IZO micrographs show randomly oriented nanorod morphology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyona, M.D., Jambure, S.B., Osuji, R.U. et al. The effect of indium doping on photovoltaic properties of chemically synthesized zinc oxide thin-film electrodes. J Solid State Electrochem 24, 313–320 (2020). https://doi.org/10.1007/s10008-019-04438-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04438-8

Keywords

Navigation