Skip to main content
Log in

Solvent Control in the Formation of Supramolecular Solvates of 2,4-Diamino-6-methyl-1,3,5-triazine with 5-Nitroisophthalic Acid

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Crystal shapes can be affected by different solvents from sheet, rod, to block because they can enter into the crystal lattice and co-crystallize with the ligands from various instantaneous microenvironments. In this study, two new supramolecular solvates, formulated as [(C8H4NO6+)·(C4H8N5)]·H2O (1) and [(C8H3NO62+)·(C4H8N5)2]·CH3OH (2), were synthesized by the combination of 2,4-diamino-6-methyl-1,3,5-triazine (DAMT) and 5-nitroisophthalic acid (H2NIPA) from the solvent mixture of CH3COCH3–H2O/CH3OH–H2O, respectively. Interestingly, the structures of these two solvates contain both classical hydrogen bond N–H⋯O and heterosynthon \({\text{R}}_{2}^{2}\) (8). And due to the different solutions, the supramolecular aggregates led to different crystal structures and shapes. Structural analysis shows that the differences in the two solvate structures mainly attributed to the unique hydrogen bonding pattern between the dimers and solvents molecules. 1 and 2 were characterized by single crystal X-ray diffraction, element analysis, infrared radiation, and thermogravimetric analysis.

Graphical abstract

Two new supramolecular solvates were synthesized by the combination of 2,4-diamino-6-methyl-1,3,5-triazine (DAMT) and 5-nitroisophthalic acid (H2NIPA) from the solvent mixture of CH3COCH3–H2O/CH3OH–H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Luo YH, Chen C, Hong DL, He XT, Wang JW, Sun BW (2018) J Phys Chem Lett 9:2158–2163

    CAS  PubMed  Google Scholar 

  2. Wang L, Zhao L, Xu LY, Chen RX, Yang Y (2012) CrystEngComm 14:6998–7008

    CAS  Google Scholar 

  3. Wang L, Zhao L, Hu YJ, Wang WQ, Chen RX, Yang Y (2013) CrystEngComm 15:2835–2852

    CAS  Google Scholar 

  4. Wang L, Zhao L, Liu WM, Chen RX, Gu YX, Yang Y (2012) Sci China Chem 55:2381–2387

    CAS  Google Scholar 

  5. Luo YH, Chen C, Hong DL, He XT, Wang JW, Ding T, Wang BJ, Sun BW (2018) ACS Appl Mater Interfaces 10:9495–9502

    CAS  PubMed  Google Scholar 

  6. Han LL, Hu TP, Chen JS, Li ZH, Wang XP, Zhao YQ, Li XY, Sun D (2014) Dalton Trans 43:8774–8780

    CAS  PubMed  Google Scholar 

  7. Vekilov PG (2010) Cryst Growth Des 10:5007–5019

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu JK, Wu QS, Ding YP (2015) Cryst Growth Des 5:445–449

    Google Scholar 

  9. Han LL, Hu TP, Mei K, Guo ZM, Yin C, Wang YX, Zheng J, Wang XP, Sun D (2015) Dalton Trans 44:6052–6061

    CAS  PubMed  Google Scholar 

  10. Li SB, Ma HY, Pang HJ, Zhang L (2014) Cryst Growth Des 14:4450–4460

    CAS  Google Scholar 

  11. Ayoubi MA, Almdal K, Zhu K, Nyström B, Olsson U, Piculell L (2015) RSC Adv 5:31091–31103

    Google Scholar 

  12. Sun D, Li YH, Hao HJ, Liu FJ, Wen YM, Huang RB, Zheng LS (2011) Cryst Growth Des 11:3323–3327

    CAS  Google Scholar 

  13. Han LL, Li ZH, Chen JS, Wang XP, Sun D (2014) Cryst Growth Des 14:1221–1226

    CAS  Google Scholar 

  14. Danylyuk O, Butkiewicz H, Coleman AW, Suwinska K (2015) CrystEngComm 17:1745–1749

    CAS  Google Scholar 

  15. Rager T, Hilfiker R (2010) Cryst Growth Des 10:3237–3241

    CAS  Google Scholar 

  16. Das D, Barbour LJ (2009) Cryst Growth Des 9:1599–1604

    CAS  Google Scholar 

  17. Sládková V, Skalická T, Skořepová E, Čejka J, Eigner V, Kratochvíl B (2015) CrystEngComm 17:4712–4721

    Google Scholar 

  18. Fleischman SG, Kuduva SS, McMahon JA, Moulton B, Walsh RDB, Hornedo NR, Zaworotko MJ (2003) Cryst Growth Des 3:909–919

    CAS  Google Scholar 

  19. Almarsson Ö, Zaworotko MJ (2014) Chem Commun 17:1889–1896

    Google Scholar 

  20. Marjo CE, Bhadbhade M, Hook JM, Rich AM (2011) Mol Pharmaceutics 8:2454–2464

    CAS  Google Scholar 

  21. Almarsson Ö, Hickey MB, Peterson ML, Morissette SL, Soukasene S, McNulty C, Tawa M, MacPhee JM, Remenar JF (2003) Cryst Growth Des 3:927–933

    CAS  Google Scholar 

  22. Clarke HD, Arora KK, Bass H, Kavuru P, Ong TT, Pujari T, Wojtas L, Zaworotko MJ (2010) Cryst Growth Des 10:2152–2167

    CAS  Google Scholar 

  23. Takieddin K, Khimyak YZ, Fábián L (2016) Cryst Growth Des 16:70–81

    CAS  Google Scholar 

  24. Day J, Marriott KER, Kilner CA, Halcrow MA (2014) New J Chem 34:52–60

    Google Scholar 

  25. Patil RS, Drachnik AM, Kumari H, Barnes CL, Deakyne CA, Atwood JL (2015) Cryst Growth Des 15:2781–2786

    CAS  Google Scholar 

  26. Suzuki M, Kobayashi K (2011) Cryst Growth Des 11:1814–1820

    CAS  Google Scholar 

  27. Iwata K, Kojima T, Ikeda Y (2014) Cryst Growth Des 1:3335–3342

    Google Scholar 

  28. Li YT, Li L, Zhu YP, Meng XG, Wu AX (2009) Cryst Growth Des 9:4255–4257

    CAS  Google Scholar 

  29. Chen JX, Wang JK, Ulrich J, Yin QX, Xue LZ (2008) Cryst Growth Des 8:1490–1494

    CAS  Google Scholar 

  30. Chakravarty P, Suryanarayanan R (2010) Cryst Growth Des 10:4414–4420

    CAS  Google Scholar 

  31. Ouhib F, Raynal M, Jouvelet B, Isare B, Bouteiller L (2011) Chem Commun 47:10683–10685

    CAS  Google Scholar 

  32. Alshahateet SF, Bhadbhade MM, Bishop R, Scudderc ML (2015) CrystEngComm 17:877–888

    CAS  Google Scholar 

  33. Meot-Ner M, Elmore DE, Scheiner S (1999) J Am Chem Soc 121:7625–7635

    CAS  Google Scholar 

  34. Banerjee S, Adarsh NN, Dastidar P (2012) Cryst Growth Des 12:6061–6067

    CAS  Google Scholar 

  35. Guo H, Karplus M (2014) J Phys Chem 98:7104–7105

    Google Scholar 

  36. Du W, Yin QX, Gong JB, Bao Y, Zhang X, Sun XW, Ding SP, Xie C, Zhang MJ, Hao HX (2014) Cryst Growth Des 14:4519–4525

    CAS  Google Scholar 

  37. Kulkarni SA, McGarrity ES, Meekes H, Horst JH (2012) Chem Commun 48:4983–4985

    CAS  Google Scholar 

  38. Trask AV, Shan N, Motherwell WDS, Jones W, Feng SH, Tan RBH, Carpenter KJ (2015) Chem Commun 10:880–882

    Google Scholar 

  39. Choudhury AR, Nagarajan K, Row TNG (2006) CrystEngComm 8:482–488

    CAS  Google Scholar 

  40. Li P, Arman HD, Wang HL, Weng LH, Alfooty K, Angawi RF, Chen BL (2015) Cryst Growth Des 15:1871–1875

    CAS  Google Scholar 

  41. Yang WB, Greenaway A, Lin X, Matsuda R, Blake AJ, Wilson C, Lewis W, Hubberstey P, Kitagawa S, Champness NR, Schröder M (2010) J Am Chem Soc 132:14457–14469

    CAS  PubMed  Google Scholar 

  42. Lü J, Perez-Krap C, Suyetin M, Alsmail NH, Yan Y, Yang SH, Lewis W, Bichoutskaia E, Tang CC, Blake AJ, Cao R, Schröder M (2014) J Am Chem Soc 136:12828–12831

    PubMed  PubMed Central  Google Scholar 

  43. Lemmerer A, Adsmond DA, Esterhuysen C, Bernstein J (2013) Cryst Growth Des 13:3935–3952

    CAS  Google Scholar 

  44. Wang L, Xue RY, Li YX, Zhao YR, Liu FQ, Huang KK (2014) CrystEngComm 16:7074–7089

    CAS  Google Scholar 

  45. Sheldrick GM (1997) SHELXS-97 Program for the solution of crystal structures. University of Gottingen, Gottingen

    Google Scholar 

  46. Sheldrick GM (1997) SHELXS-97 Programs for X-ray crystal structure refinement. University of Gottingen, Gottingen

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (nos. 51372125, 21571112, and 51572136), the Natural Science Foundation of Shandong Province, China (no. ZR2011BL015), and the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry (2013-34).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peiqi Xing or Lei Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10870_2018_744_MOESM1_ESM.doc

CCDC reference numbers 1532370-1532371 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB 21EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk. Supplementary data associated with this article can be found in the online version. (DOC 492 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Zhang, K., Zhang, C. et al. Solvent Control in the Formation of Supramolecular Solvates of 2,4-Diamino-6-methyl-1,3,5-triazine with 5-Nitroisophthalic Acid. J Chem Crystallogr 50, 1–7 (2020). https://doi.org/10.1007/s10870-018-0744-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-018-0744-0

Keywords

Navigation