Skip to main content
Log in

Control of Three Dimensional Water Waves

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the exact controllability for spatially periodic water waves with surface tension, by localized exterior pressures applied to free surfaces. We prove that in any dimension, the exact controllability holds within an arbitrarily short time, for sufficiently small and regular data, provided that the region of control satisfies the geometric control condition. This result was previously obtained by Alazard et al. (J Eur Math Soc 20(3), 657–745, 2018) for 2-D water waves. Our proof combines an iterative scheme, that reduces the controllability of the original quasi-linear equation to that of a sequence of linear equations, with a semiclassical approach for the linear control problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We use the same notation \( \omega \) for the good unknown of Alinhac and the domain of control for it causes no ambiguity, and it is a standard notation in both cases in the literature.

References

  1. Alazard, T., Baldi, P., Han-Kwan, D.: Control of water waves. J. Eur. Math. Soc. (JEMS)20(3), 657–745, 2018

    MathSciNet  MATH  Google Scholar 

  2. Alazard, T., Burq, N., Zuily, C.: On the water-wave equations with surface tension. Duke Math. J. 158(3), 413–499, 2011

    MathSciNet  MATH  Google Scholar 

  3. Alazard, T., Burq, N., Zuily, C.: The Water-Wave Equations: From Zakharov to Euler. Studies in Phase Space Analysis with Applications to PDEs, pp. 1–20. Springer, New York 2013

    MATH  Google Scholar 

  4. Alazard, T., Burq, N., Zuily, C.: On the Cauchy problem for gravity water waves. Invent. Math. 198(1), 71–163, 2014

    ADS  MathSciNet  MATH  Google Scholar 

  5. Alazard , T., Burq , N., Zuily , C.: Cauchy theory for the gravity water waves system with non-localized initial data. Annales de l’Institut Henri Poincare (C) Non Linear Analysis. Elsevier Masson 33(2), 337–395, 2016

    ADS  MathSciNet  MATH  Google Scholar 

  6. Alazard, T., Métivier, G.: Paralinearization of the Dirichlet to Neumann operator, and regularity of three-dimensional water waves. Commun. Partial Differ. Equ. 34(12), 1632–1704, 2009

    MathSciNet  MATH  Google Scholar 

  7. Anantharaman, N., Macià, F.: Semiclassical measures for the Schrödinger equation on the torus. J. Eur. Math. Soc. 16(6), 1253–1288, 2014

    MathSciNet  MATH  Google Scholar 

  8. Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30(5), 1024–1065, 1992

    MathSciNet  MATH  Google Scholar 

  9. Benjamin, T.B., Olver, P.J.: Hamiltonian structure, symmetries and conservation laws for water waves. J. Fluid Mech. 125, 137–185, 1982

    ADS  MathSciNet  MATH  Google Scholar 

  10. Beyer, K., Günther, M.: On the Cauchy problem for a capillary drop. Part I: irrotational motion. Math. Methods Appl. Sci. 21(12), 1149–1183, 1998

    ADS  MathSciNet  MATH  Google Scholar 

  11. Bony, J.M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Annales scientifiques de l’École Normale supérieure. 14(2), 209–246, 1981

    MathSciNet  MATH  Google Scholar 

  12. Bourgain, J.: On the Control Problem for Schrödinger Operators on Tori, pp. 97–105. Springer, Berlin 2014

    MATH  Google Scholar 

  13. Bourgain, J., Burq, N., Zworski, M.: Control for Schrödinger operators on 2-tori: rough potentials. J. Eur. Math. Soc. 15(5), 1597–1628, 2013

    MathSciNet  MATH  Google Scholar 

  14. Burq, N.: Mesures semi-classiques et mesures de défaut. Séminaire Bourbaki39, 167–195, 1997

    MATH  Google Scholar 

  15. Burq, N., Gérard, P.: Contrôle Optimal des Equations aux Derivées Partielles. Ecole Polytechnique, Département de mathématiques, Palaiseau 2002

    Google Scholar 

  16. Burq, N., Gérard, P.: Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics325(7), 749–752, 1997

    ADS  MATH  Google Scholar 

  17. Burq, N., Gérard, P., Tzvetkov, N.: Strichartz inequalities and the nonlinear Schr ödinger equation on compact manifolds. Am. J. Math. 126(3), 569–605, 2004

    MATH  Google Scholar 

  18. Burq, N., Zworski, M.: Geometric control in the presence of a black box. J. Am. Math. Soc. 17(2), 443–471, 2004

    MathSciNet  MATH  Google Scholar 

  19. Burq, N., Zworski, M.: Control For Schrödinger operators on tori. Math. Res. Lett. 19(2), 309–324, 2012

    MathSciNet  MATH  Google Scholar 

  20. Craig, W., Sulem, C.: Numerical simulation of gravity waves. J. Comput. Phys. 108(1), 73–83, 1993

    ADS  MathSciNet  MATH  Google Scholar 

  21. Dimassi, M., Sjöstrand, J.: Spectral Asymptotics in the Semi-classical Limit. Cambridge University Press, Cambridge 1999

    MATH  Google Scholar 

  22. Gérard, P.: Mesures semi-classiques et ondes de Bloch. Séminaire Équations aux dérivées partielles (Polytechnique), 1–19, 1991.

  23. Gérard, P., Leichtnam, É.: Ergodic properties of eigenfunctions for the Dirichlet problem. Université de Paris-sud, Département de mathématiques, 1992

  24. Haraux, A.: Séries lacunaires et contrôle semi-interne des vibrations d’une plaque rectangulaire. J. Math. Pures Appl. 68(4), 457–465, 1989

    MathSciNet  MATH  Google Scholar 

  25. Hörmander, L.: The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators. Springer, Berlin 2007

    MATH  Google Scholar 

  26. Hörmander, L.: Lectures on Nonlinear Hyperbolic Differential Equations. Springer, Berlin 1997

    MATH  Google Scholar 

  27. Ifrim, M., Tataru, D.: The lifespan of small data solutions in two dimensional capillary water waves. Arch. Ration. Mech. Anal. 225(3), 1279–1346, 2017

    MathSciNet  MATH  Google Scholar 

  28. Ionescu, A.D., Pusateri, F.: Recent advances on the global regularity for irrotational water waves. Philos. Trans. R. Soc. A. 376(2111), 20170089, 2018. https://doi.org/10.1098/rsta.2017.0089

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Jaffard, S.: Contrôle interne exact des vibrations d’une plaque rectangulaire. Port. Math. 47(4), 423–429, 1990

    MATH  Google Scholar 

  30. Kano, T., Nishida, T.: Sur les ondes de surface de l’eau avec une justification mathématique des équations des ondes en eau peu profonde. J. Math. Kyoto Univ. 19(2), 335–370, 1979

    MathSciNet  MATH  Google Scholar 

  31. Lannes, D.: Well-posedness of the water-waves equations. J. Am. Math. Soc. 18(3), 605–654, 2005

    MathSciNet  MATH  Google Scholar 

  32. Lannes, D.: The water waves problem. Mathematical Surveys and Monographs, 188, 2013

  33. Lebeau, G.: Contrôle de l’équation de Schrödinger. J. Math. Pures Appl. 71(3), 267–291, 1992

    MathSciNet  MATH  Google Scholar 

  34. Lebeau, G.: Équations des ondes amorties. Séminaire Équations aux dérivées partielles (Polytechnique), 1–14, 1996.

  35. Lions, J.L.: Contrôlabilité exacte, stabilisation et perturbations de systemes distribués. Tome 1. Contrôlabilité exacte. Rech. Math. Appl., 8, 1988.

  36. Lions, J.L.: Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev. 30(1), 1–68, 1988

    MathSciNet  MATH  Google Scholar 

  37. Lions, P.L., Paul, T.: Sur les mesures de Wigner. Rev. Mat. Iberoam. 9(3), 553–618, 1993

    MathSciNet  MATH  Google Scholar 

  38. Métivier, G.: Para-Differential Calculus and Applications to the Cauchy Problem for Nonlinear Systems. Edizioni della Normale, Pisa 2008

    MATH  Google Scholar 

  39. Miller, L.: Controllability cost of conservative systems: resolvent condition and transmutation. J. Funct. Anal. 218(2), 425–444, 2005

    MathSciNet  MATH  Google Scholar 

  40. de Poyferré T., Nguyen Q.H.: A paradifferential reduction for the gravity-capillary waves system at low regularity and applications. Bull. Soc. Math. France. 145(4), 643–710, 2017

    MathSciNet  MATH  Google Scholar 

  41. Rauch, J., Taylor, M.: Decay of solutions to nondissipative hyperbolic systems on compact manifolds. Commun. Pure Appl. Math. 28(4), 501–523, 1975

    MathSciNet  MATH  Google Scholar 

  42. Staffilani, G., Tataru, D.: Strichartz estimates for a Schrödinger operator with nonsmooth coefficients. Commun. Partial Differ. Equ. 27(7–8), 1337–1372, 2002

    MATH  Google Scholar 

  43. Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130(1), 39–72, 1997

    ADS  MathSciNet  MATH  Google Scholar 

  44. Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Am. Math. Soc. 12(2), 445–495, 1999

    MathSciNet  MATH  Google Scholar 

  45. Wang X.: Global regularity for the 3D finite depth capillary water waves. arXiv preprint arXiv:1611.05472, 2016

  46. Yosihara, H.: Gravity waves on the free surface of an incompressible perfect fluid of finite depth. Publ. Res. Inst. Math. Sci. 18(1), 49–96, 1982

    MathSciNet  MATH  Google Scholar 

  47. Yosihara, H.: Capillary-gravity waves for an incompressible ideal fluid. J. Math. Kyoto Univ. 23(4), 649–694, 1983

    MathSciNet  MATH  Google Scholar 

  48. Zworski, M.: Semiclassical Analysis. American Mathematical Society, Providence 2012

    MATH  Google Scholar 

  49. Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9(2), 190–194, 1968

    ADS  Google Scholar 

  50. Zuazua, E.: Controllability and observability of partial differential equations: some results and open problems. Handb. Differ. Equ. Evol. Equ. 3, 527–621, 2007

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to express his sincere gratitude to his Ph.D. advisors Thomas Alazard and Nicolas Burq for their continuous support and advices. He would like to thank Claude Zuily and Patrick Gérard for all their help and encouragement, and thank Huy Quang Nguyen for some useful discussions at the beginning of this project. He would also like to thank Jean-Marc Delort and Daniel Tataru for their careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhu.

Additional information

Communicated by N. Masmoudi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author is partially supported by the grant “ANAÉ” ANR-13-BS01-0010-03 of the Agence Nationale de la Recherche. This research is carried out during the author’s PhD studies, financed by the Allocation Doctorale of the École Normale Supérieure.

Appendices

Appendix A. Necessity of Geometric Control Condition

We prove that the geometric control condition is necessary for the controllability of the three dimensional water wave equation (that is \( d = 2 \)) with infinite depth (that is \( b = \infty \)) linearized around the flat surface (that is \( \eta = 0 \)). We believe that similar arguments are suffice to prove the same results in arbitrary dimensions and for finite depth, however, we do not attempt to generalize the result in this direction for the sake of simplicity.

Now this linearized equation is a fractional Schrödinger equation \( \partial _tu + i |D|^{3/2} u = T_{1}\mathrm {Re}\varphi _\omega F \). We will consider more generally the following control problem in \( L^2(\mathbb {T}^2) \):

$$\begin{aligned} \partial _tu + i |D|^{\alpha } u = B \varphi F, \quad 1 \leqq \alpha \leqq 2. \end{aligned}$$
(A.1)

Here \( \varphi \in C^\infty (\mathbb {T}^2) \) and B is a bounded operator on \( L^2(\mathbb {T}^2) \). If \( \alpha = 1 \), we have the (half) wave equation. When \( B = \mathrm {Id}\), it is exactly controllable, if and only if the geometric control condition is satisfied, see [8, 16]. If \( \alpha = 2 \), we have the Schrödinger equation. When \( B = \mathrm {Id}\), it is always exactly controllable (on tori) whether or not under the geometric control condition, see [7, 13, 19, 24, 29]. We are now in the middle of the two typical cases \( 1< \alpha < 2 \) where we show that the geometric control condition is necessary to exactly control (A.1) on \( \mathbb {T}^2 \).

Definition A.1

We say that (A.1) is exactly controllable, if there exists \( T > 0 \), such that for all \( u_0, u_1 \in L^2(\mathbb {T}^2) \), there exists \( F \in C([0,T],L^2(\mathbb {T}^2)) \), and a solution \( u \in C([0,T],L^2(\mathbb {T}^2)) \) to (A.1), satisfying \( u(0) = u_0 \), \( u(T) = u_1 \).

Proposition A.2

Suppose that \( 1< \alpha < 2 \), and (A.1) is exactly controllable, then

$$\begin{aligned} \omega \mathrel {\mathop :}=\{ z = (x,y) \in \mathbb {T}^2 : \varphi (z) \ne 0\} \end{aligned}$$

satisfies the geometric control condition.

Proof

The idea is to prove by contradiction by using the following lemma due to BurqZworski [18], and Miller [39].

Lemma A.3

The equation (A.1) is exactly controllable, if and only if, for some \( C > 0 \), for all \( \lambda \in \mathbb {R}\), and for all \( u \in C^\infty (\mathbb {T}^2) \),

$$\begin{aligned} C \Vert u\Vert _{L^2} \leqq \Vert (|D_z|^\alpha - \lambda ) u\Vert _{L^2} + \Vert B\varphi u\Vert _{L^2}. \end{aligned}$$
(A.2)

We may assume that \( \varphi \not \equiv 0 \), so that \( \omega \ne \emptyset \), for the case will be trivial otherwise. Suppose that \( \omega \) does not satisfy the geometric control condition, we will show that (A.2) does not hold for any fixed \( C > 0 \). By hypothesis, modulo some necessary translation, there exists some \( \gamma \in \mathbb {R}^2\backslash \{0\} \) such that the geodesic \( \Gamma _\gamma = \{\gamma t : t \in \mathbb {R}\} \) does not enter \( \omega \). Now that \( \omega \ne \emptyset \), \( \Gamma _\gamma \) cannot be dense. Thus we may further more assume that \( \gamma \in \mathbb {Z}^2 \).

Consider \( \Gamma _\gamma \) as a Lie group acting on \( \mathbb {T}^2 \), \( \Gamma _\gamma \ni \gamma t : z \mapsto z + \gamma t \), which defines a quotient manifold \( \kappa : \mathbb {T}^2 \rightarrow \mathbb {T}^2 / \Gamma _\gamma \), \( z \mapsto z + \Gamma _\gamma \). Choose \( \delta > 0 \) sufficiently small such that

$$\begin{aligned} \Vert \varphi \Vert _{L^\infty (\mathcal {N}_\delta )} < \frac{C}{2}(1+\Vert B\Vert _{\mathcal {L}(L^2,L^2)})^{-1}, \end{aligned}$$

where \( \mathcal {N}_\delta = \{z \in \mathbb {T}^2 : \mathrm {dist}(z,\Gamma _\gamma ) < \delta \} \). Observe that \( \kappa (\mathcal {N}_\delta ) \) is open (with respect to the canonical quotient topology) for \( \kappa ^{-1} (\kappa (\mathcal {N}_\delta )) = \mathcal {N}_\delta \) is open. Fix \( 0 \ne \psi \in C_c^\infty (\kappa (\mathcal {N}_\delta )) \subset C^\infty (\mathbb {T}^2/\Gamma _\gamma ) \), and set \( \chi = \psi \circ \kappa \in C_c^\infty (\mathcal {N}_\delta ) \subset C^\infty (\mathbb {T}^2) \), \( u^n(z) = e^{in\gamma \cdot z} \chi (z) \) for \( n \in \mathbb {N}\).

Expending \( \chi \) in Fourier series, we write \( \chi (z) = \sum _{k\in \mathbb {Z}^2} c_k e^{ik\cdot z} \), and claim that \( c_k = 0 \) unless \( k \in \gamma ^\perp \mathrel {\mathop :}=\{\ell \in \mathbb {Z}^d : \ell \cdot \gamma = 0 \}\). Indeed, if \( k \notin \gamma ^\perp \), then there exists \( w = \gamma t \in \Gamma _\gamma \) such that, \( k \cdot w \not \equiv 0 \) modulo \( 2\pi \). Observe that \( \chi (z+w) = \psi (\kappa (z+w)) = \psi (\kappa (z)) = \chi (z) \), we have

$$\begin{aligned} c_k = \frac{1}{4\pi ^2} \int _{\mathbb {T}^2} \chi (z+w) e^{-ik\cdot z} \,\mathrm {d}z = e^{ik\cdot w} \frac{1}{4\pi ^2} \int _{\mathbb {T}^2} \chi (z) e^{-ik\cdot z} \,\mathrm {d}z = e^{ik\cdot w} c_k, \end{aligned}$$

which implies that \( c_k = 0 \). Therefore, \( u^n(z) = \sum _{k \in \gamma ^\perp } c_k e^{i(n\gamma + k) \cdot z} \), and

$$\begin{aligned} |D_z|^\alpha u^n = \sum _{k \in \gamma ^\perp } c_k |n\gamma +k|^{\alpha } e^{i(n\gamma + k) \cdot z} = \sum _{k \in \gamma ^\perp } c_k (n^2|\gamma |^2+|k|^2)^{\alpha /2} e^{i(n\gamma + k) \cdot z}. \end{aligned}$$

Let \( \lambda _n = n^\alpha |\gamma |^\alpha \), then

$$\begin{aligned} (|D_z|^\alpha - \lambda _n) u^n = \sum _{0 \ne k \in \gamma ^\perp } c_k |k|^\alpha f\big (\frac{|k|}{n|\gamma |}\big ) e^{i(n\gamma + k) \cdot z}, \end{aligned}$$

where \( f(t) = \frac{(1+t^2)^{\alpha /2}-1}{t^\alpha }. \) By an integration by part, for any \( N \geqq 1 \), \( |k|^\alpha |c_k| \lesssim |k|^{-N} \). Observe that f is continuous on \( ]0,+\infty [ \), with \( \lim _{t\rightarrow +\infty } f(t) = 1 \), and \( f(t) = O(t^{2-\alpha }) \) as \( t \rightarrow 0^+ \). We have therefore the estimate

$$\begin{aligned} f\big (\frac{|k|}{n|\gamma |}\big ) \lesssim {\left\{ \begin{array}{ll} \frac{1}{n^{(2-\alpha )/2}}, &{} 0 < |k| \leqq \sqrt{n}; \\ 1, &{} |k| > \sqrt{n}. \end{array}\right. } \end{aligned}$$

To conclude, we show that the sequence \( (u^n,\lambda _n) \) violates (A.2). Indeed \( \Vert u^n\Vert _{L^2} = \Vert \chi \Vert _{L^2} \), and \( \Vert B \varphi u^n\Vert _{L^2} \leqq \Vert B\Vert _{\mathcal {L}(L^2,L^2)} \Vert \varphi \Vert _{L^\infty (\mathcal {N}_\delta )} \Vert \chi \Vert _{L^2} \leqq \frac{C}{2} \Vert \chi \Vert _{L^2} \), and for any \( N \geqq 2 \),

$$\begin{aligned} \Vert (|D_z|^\alpha - \lambda _n) u^n\Vert _{L^2}^2&\lesssim \frac{1}{n^{(2-\alpha )/2}} \sum _{|k| \leqq \sqrt{n}} \frac{1}{|k|^{N}} + \sum _{|k| > \sqrt{n}} \frac{1}{|k|^{N}} = o(1), \quad \mathrm {as} \quad n \rightarrow \infty . \end{aligned}$$

\(\square \)

Appendix B. Paradifferential Calculus

For results of this section, we refer to [5, 38].

1.1 B.1. Paradifferential Operators

For \( \infty \geqq \rho \geqq 0 \), denote by \( W^{\rho ,\infty }(\mathbb {T}^d) \) the space of Hölderian functions of regularity \( \rho \) on \( \mathbb {T}^d\).

Definition B.1

For \( m \in \mathbb {R}\), \( \rho \geqq 0 \), let \( \dot{\Gamma }^{m}_{\rho }(\mathbb {T}^d) \) denote the space of locally bounded functions \( a(x,\xi ) \) on \( \mathbb {T}^d_x \times (\mathbb {R}^d_\xi \backslash 0) \), which are \( C^\infty \) with respect to \( \xi \in \mathbb {R}^d\backslash 0 \), such that for all \( \alpha \in \mathbb {N}^d \) and \( \xi \ne 0 \), the function \( x \mapsto \partial _\xi ^\alpha a(x,\xi ) \) belongs to \( W^{\rho ,\infty }(\mathbb {T}^d) \), and that for some constant \( C_\alpha \),

$$\begin{aligned} \Vert \partial _\xi ^\alpha a(\cdot ,\xi )\Vert _{W^{\rho ,\infty }} \leqq C_\alpha \langle \xi \rangle ^{m - |\alpha |}, \quad \forall |\xi | \geqq \frac{1}{2}, \end{aligned}$$

where \( \langle \xi \rangle = (1 + |\xi |^2)^{1/2} \).

Define on \( \dot{\Gamma }^{m}_{\rho }(\mathbb {T}^d) \) the semi-norms

$$\begin{aligned} {\dot{M}}^{m}_{\rho ,n}(a) = \sup _{|\alpha | \leqq n} \sup _{|\xi | \geqq 1/2} \Vert \langle \xi \rangle ^{|\alpha | - m} \partial _\xi ^{\alpha } a(\cdot ,\xi )\Vert _{W^{\rho ,\infty }}. \end{aligned}$$

Definition B.2

The function \( \chi = \chi (\theta ,\eta ) \) is called an admissible cutoff function, if

  1. (1)

    \( \chi \in C^\infty (\mathbb {R}^d_\theta \times \mathbb {R}^d_\eta ) \) is an even function, that is, \( \chi (-\theta ,-\eta ) = \chi (\theta ,\eta ) \);

  2. (2)

    it satisfies the following spectral condition: for some \( 0< \epsilon _1< \epsilon _2 < 1/2 \),

    $$\begin{aligned} {\left\{ \begin{array}{ll} \chi (\theta ,\eta ) = 1, &{} |\theta | \leqq \epsilon _1 \langle \eta \rangle , \\ \chi (\theta ,\eta ) = 0, &{} |\theta | \geqq \epsilon _2 \langle \eta \rangle ; \end{array}\right. } \end{aligned}$$
    (B.1)
  3. (3)

    for all \( (\alpha ,\beta ) \in \mathbb {N}^d\times \mathbb {N}^d \), and some \( C_{\alpha \beta } > 0 \),

    $$\begin{aligned} \big |\partial _\theta ^\alpha \partial _\eta ^\beta \chi (\theta ,\eta )\big | \leqq C_{\alpha \beta } \langle \eta \rangle ^{-|\alpha |-|\beta |}. \end{aligned}$$

Let \( \chi \) be an admissible cutoff function, and let \( \pi \in C^\infty (\mathbb {R}^d) \) be an even function such that \( 0 \leqq \pi \leqq 1 \), \( \pi (\xi ) = 0 \) for \( |\xi | \leqq 1/4 \), and \( \pi (\xi ) = 1 \) for \( |\xi | \geqq 3/4 \). Now given a symbol \( a \in \dot{\Gamma }^{m}_{\rho }(\mathbb {T}^d) \), the paradifferential operator \( T_{a} \) is formally defined by

$$\begin{aligned} \widehat{T_{a}{u}}(\xi ) = (2\pi )^{-d} \sum _{\eta \in \mathbb {Z}^d} \chi (\xi - \eta ,\eta ) {\hat{a}}(\xi - \eta ,\eta ) \pi (\eta ) {\hat{u}}(\eta ), \end{aligned}$$
(B.2)

where \( {\hat{a}}(\theta ,\eta ) = \big (\mathcal {F}_{x \rightarrow \theta } a\big )(\theta ,\eta ) = \int _{\mathbb {T}^d}e^{-i x \cdot \theta } a(x,\eta ) \,\mathrm {d}x\). Alternatively, set

$$\begin{aligned} a^\chi (\cdot ,\xi ) = \chi (D_x,\xi ) a(\cdot ,\xi ), \end{aligned}$$

then by definition, \( T_{a}{u} = a^\chi (x,D_x) \pi (D_x) u \).

Theorem B.3

Let \( a \in \dot{\Gamma }^{m}_{0} \), then \( T_{a} \) is of order m such that for all \( s \in \mathbb {R}\), \( T_{a} \) defines a bounded operator from \( H^{s+m}(\mathbb {T}^d) \) to \( {\dot{H}}^{s}(\mathbb {T}^d) \), such that

$$\begin{aligned} \Vert T_{a}\Vert _{\mathcal {L}(H^{s + m}, {\dot{H}}^{s})} \lesssim M^{m}_{0,d/2+1}(a). \end{aligned}$$
(B.3)

In particular, \( T_{a} = T_{a} \pi (D_x) = \pi (D_x) T_{a} \).

Proof

For the estimate we refer to [38]. It remains to show that for \( u \in H^{s+m}(\mathbb {T}^d) \), \( T_{a} u \) has no zero frequency, or equivalently, \( \widehat{T_{a}u}(0) = 0 \). Indeed, by definition

$$\begin{aligned} \widehat{T_{a}{u}}(0) = (2\pi )^{-d} \sum _{0 \ne \eta \in \mathbb {Z}^d} \chi (- \eta ,\eta ) {\hat{a}}(- \eta ,\eta ) {\hat{u}}(\eta ) = 0, \end{aligned}$$

since \( \chi (- \eta ,\eta ) = 0 \) for all \( \eta \ne 0 \) by (B.1). \(\quad \square \)

Proposition B.4

For all \( s \in \mathbb {R}\), \( T_{1} = \pi (D_x) = \mathrm {Id}_{{\dot{H}}^{s}} \).

Proof

Observe that \( {\hat{a}}(\theta ,\eta ) = 1_{\theta = 0}(\theta ,\eta ) \) if \( a \equiv 1 \), therefore by definition,

$$\begin{aligned} \widehat{T_{1} u}(\xi ) = \sum _{\eta \in \mathbb {Z}^d} \chi (\xi -\eta ,\eta ) 1_{\xi =\eta } \pi (\eta ) {\hat{u}}(\eta ) \\ = \chi (0,\xi ) \pi (\xi ) {\hat{u}}(\xi ) = \pi (\xi ) {\hat{u}}(\xi ), \end{aligned}$$

since \( \chi (0,\xi ) = 1 \) for all \( \xi \in \mathbb {Z}^d \). \(\quad \square \)

Lemma B.5

Let \( a \in \dot{\Gamma }^{m}_{\rho }(\mathbb {T}^d) \), and \( \alpha \in \mathbb {N}^d \), with \( |\alpha | \leqq \rho \), then \( \partial _x^\alpha (a - a^{\chi }) \in \dot{\Gamma }^{m - \rho + |\alpha |}_{0}(\mathbb {T}^d) \) with estimates that for all \( n \in \mathbb {N}\), \( M^{m - \rho + |\alpha |}_{0,n}(\partial _x^\alpha (a - a^{\chi })) \lesssim M^{m}_{\rho ,n}(a) \).

Proof

See [38]. \(\quad \square \)

Proposition B.6

Let \( a \in \dot{\Gamma }^{m}_{\rho }(\mathbb {T}^d) \) with \( m \geqq 0 \) and \( \rho > m + 1 + d/2 \), then

$$\begin{aligned} \Vert \mathrm {Op}(a\pi ) - T_{a} \Vert _{\mathcal {L}(L^2,L^2)} \lesssim M^{m}_{\rho ,d/2+1}(a). \end{aligned}$$

Proof

By the Calderón–Vaillancourt Theorem, it suffices to show that

$$\begin{aligned} M^{0}_{d/2+1,d/2+1}(a-a^\chi ) \lesssim M^{m}_{\rho ,d/2+1}(a). \end{aligned}$$

Indeed, for \( |\alpha | \leqq d/2 + 1 \), by the previous lemma,

$$\begin{aligned} M^{0}_{0,d/2+1}(\partial _x^\alpha (a-a^\chi )) \lesssim M^{m-\rho +|\alpha |}_{0,d/2+1}(\partial _x^\alpha (a-a^\chi )) \lesssim M^{m}_{\rho ,d/2+1}(a). \end{aligned}$$

\(\square \)

Lemma B.7

Let \( a \in S^m(\mathbb {T}^d) \) be in the Hörmander class. If it is either a real valued even function of \( \xi \), or a pure imaginary valued odd function of \( \xi \), then for \( u \in C^\infty (\mathbb {T}^d,\mathbb {C}) \),

$$\begin{aligned} \mathrm {Op}(a) \mathrm {Re}\, u = \mathrm {Re}\, \mathrm {Op}(a) u, \qquad T_{a} \mathrm {Re}\, u = \mathrm {Re}\, T_{a} u. \end{aligned}$$

Proof

We first prove the case of pseudodifferential operators \( \mathrm {Op}(a) \). Let \( {\tilde{a}}(x,\xi ) = \overline{a(x,-\xi )} \), then by our hypothesis \( a = {\tilde{a}} \). Therefore, for any real valued function u,

$$\begin{aligned} \mathrm {Op}(a) u = \overline{\mathrm {Op}({\tilde{a}}) \bar{u}} = \overline{\mathrm {Op}(a) u}, \end{aligned}$$

which implies that \( \mathrm {Op}(a) u \) is real valued. Then for a complex function u,

$$\begin{aligned} \mathrm {Op}(a) u = \mathrm {Op}(a) (\mathrm {Re}\, u + i \mathrm {Im}\, u) = \mathrm {Op}(a) \mathrm {Re}\, u + i \mathrm {Op}(a) \mathrm {Im}\, u. \end{aligned}$$

We conclude that \( \mathrm {Re}\, \mathrm {Op}(a) u = \mathrm {Op}(a) \mathrm {Re}\, u \), \( \mathrm {Im}\,\mathrm {Op}(a) u = \mathrm {Op}(a) \mathrm {Im}\, u \).

As for the paradifferential case, \( T_{a} = \mathrm {Op}(a^\chi \pi ) \) with \( (a^\chi \pi )(x,\xi ) = \chi (D_x,\xi ) a(\cdot ,\xi ) \). Now that \( \chi \) is even, by the pseudodifferential case, \( \chi (D_x,\xi ) \) commute with \( \mathrm {Re}\). This implies that \( a^\chi \pi \) remains to be a real symbol, and an even function of \( \xi \), or a pure imaginary symbol and an odd function of \( \xi \), so the case of paradifferential operators follows. \(\quad \square \)

1.2 B.2. Symbolic Calculus

Theorem B.8

Let \( a \in \dot{\Gamma }^{m}_{\rho }(\mathbb {T}^d) \), \( b \in \dot{\Gamma }^{m'}_{\rho }(\mathbb {T}^d) \), with \( m, m' \in \mathbb {R}\), \( 0 \leqq \rho <\infty \). Set

$$\begin{aligned} a \sharp b = \sum _{|\alpha | < \rho } \frac{1}{\alpha !} \partial _\xi ^\alpha a D_x^\alpha b. \end{aligned}$$

Then \( T_{a} T_{b} - T_{a \sharp b} \) is of order \( m + m' - \rho \), and

$$\begin{aligned}&\Vert T_{a} T_{b} - T_{a \sharp b}{} \Vert _{ \mathcal {L}(H^{s + m + m' - \rho }, H^{s})} \\&\quad \lesssim M^{m}_{0,d/2+1+\rho }(a) M^{m'}_{\rho ,d/2+1}(b) + M^{m'}_{0,d/2+1+\rho }(b) M^{m}_{\rho ,d/2+1}(a). \end{aligned}$$

Theorem B.9

Let \( a \in \dot{\Gamma }^{m}_{\rho }(\mathbb {T}^d) \), with \( m \in \mathbb {R}\) and \( 0 \leqq \rho < \infty \). Set

$$\begin{aligned} a^* = \sum _{|\alpha |<\rho } \frac{1}{\alpha !} \partial _\xi ^\alpha D_x^\alpha \bar{a}. \end{aligned}$$

Denote by \( T_{a}^* \) the formal adjoint of \( T_{a} \), then \( T_{a}^* - T_{a^*} \) is of order \( m - \rho \), and

$$\begin{aligned} \Vert T_{a}^* - T_{a^*} \Vert _{\mathcal {L}(H^{s+m-\rho },H^{s})} \lesssim M^{m}_{\rho ,d/2+1+\rho }(a). \end{aligned}$$

1.3 B.3. Paraproducts and Paralinearization

Theorem B.10

Let \( a \in H^{\alpha }(\mathbb {T}^d) \) and \( b \in H^{\beta }(\mathbb {T}^d) \) with \( \alpha >d/2 \) , \(\beta >d/2 \). Then

  1. (1)

    \( T_aT_b-T_{ab} \) is of order \( -\rho \) with \( \rho = \min \{\alpha ,\beta \} - d/2 \), that is, for \( s \in \mathbb {R}\),

    $$\begin{aligned} \Vert T_{a}T_{b}-T_{ab}\Vert _{\mathcal {L}(H^{s-\rho },H^{s})} \lesssim \Vert a\Vert _{H^{\alpha }} \Vert b\Vert _{H^{\beta }}; \end{aligned}$$
    (B.4)
  2. (2)

    \( T_{a}^* - T_{\bar{a}} \) is of order \( -\rho \) with \( \rho = \alpha - d/2 \), that is, for \( s \in \mathbb {R}\),

    $$\begin{aligned} \Vert T_a^* - T_{\bar{a}} \Vert _{\mathcal {L}(H^{s-\rho },H^{s})} \lesssim \Vert a \Vert _{H^{\alpha }}; \end{aligned}$$
  3. (3)

    Define the bilinear form,

    $$\begin{aligned} R(a,b) = ab - T_{a}{b} - T_{b}{a}, \end{aligned}$$
    (B.5)

    then \( R(a,b) \in H^{\alpha + \beta - d/2}(\mathbb {T}^d) \),

    $$\begin{aligned} \Vert R(a,b) \Vert _{H^{\alpha +\beta -d/2}} \lesssim \Vert a \Vert _{H^{\alpha }} \Vert b \Vert _{H^{\beta }}; \end{aligned}$$
  4. (4)

    Let \( F \in C^\infty \) with \( F(0) = 0 \), then \( F(a) = T_{F'(a)}{a} + R_F(a) \) with

    $$\begin{aligned} \Vert R_F(a) \Vert _{H^{2\alpha -d/2}} \lesssim C(\Vert a\Vert _{H^{\alpha }})\Vert a\Vert _{H^{\alpha }}. \end{aligned}$$
    (B.6)

    In particular,

    $$\begin{aligned} \Vert F(a)\Vert _{H^{\alpha }} \leqq C(\Vert a\Vert _{H^{\alpha }}) \Vert a\Vert _{H^{\alpha }}. \end{aligned}$$
    (B.7)

Appendix C. Some Linear Equations

Proposition C.1

Let \( \underline{u}\in \mathscr {C}^{0,s}(T,\varepsilon _0) \) for s sufficiently large, \( T > 0 \), and \( \varepsilon _0 \) sufficiently small. Let \( Q = Q(\underline{u}) \) be defined by (4.8), and suppose

$$\begin{aligned} R \in L^\infty ([0,T],\mathcal {L}({\dot{L}}^2,{\dot{L}}^2)) \cap C([0,T],\mathcal {L}({\dot{L}}^2,{\dot{H}}^{-\mu })) \end{aligned}$$

for some \( \mu \geqq 0 \), \( f \in L^1([0,T],{\dot{L}}^2(\mathbb {T}^d)) \). Then the Cauchy problem

$$\begin{aligned} (\partial _t+ i Q + R) u = f, \quad u(0) = u_0 \in {\dot{L}}^2(\mathbb {T}^d) \end{aligned}$$
(C.1)

admits a unique solution \( u \in C([0,T],{\dot{L}}^2(\mathbb {T}^d)) \), which moreover satisfies the estimate

$$\begin{aligned} \Vert u\Vert _{C([0,T],H^{s})} \lesssim \Vert u_0\Vert _{L^2} + \Vert f\Vert _{L^1([0,T],L^2)} \end{aligned}$$

Proof

Let \( j_\varepsilon = \exp (-\varepsilon \gamma ^{(3/2)}) + \frac{1}{2} \partial _\xi \cdot D_x \exp (-\varepsilon \gamma ^{(3/2)}) \), and set \( J_\varepsilon = \pi (D_x) \mathrm {Op}(j_\varepsilon \pi ) \). Consider the regularized Cauchy problem

$$\begin{aligned} (\partial _t+ i Q J_\varepsilon + R J_\varepsilon ) u^\varepsilon = f, \quad u^\varepsilon (0) = u_0, \end{aligned}$$

which admits a unique solution \( u^\varepsilon \in C([0,T_\varepsilon ],{\dot{L}}^2(\mathbb {T}^d)) \) for some \( T_\varepsilon > 0 \), by Cauchy-Lipschitz theorem, as \( Q J_\varepsilon , R J_\varepsilon \in C([0,T],\mathcal {L}({\dot{L}}^2,{\dot{L}}^2)) \). Following a routine method, see for example [38], to prove the existence of a solution, on the whole interval [0, T] , it suffice to prove a uniform a priori bound for \( u^\varepsilon \) and its time derivative in the energy space over the time interval [0, T] .

By the choice of the symbol \( j_\varepsilon \), we have

$$\begin{aligned} \Vert [Q,J_\varepsilon ]\Vert _{\mathcal {L}({\dot{L}}^2,{\dot{L}}^2)} \lesssim 1, \quad \Vert Q-Q^*\Vert _{\mathcal {L}({\dot{L}}^2,{\dot{L}}^2)} \lesssim 1, \quad \Vert J_\varepsilon - J_\varepsilon ^*\Vert _{\mathcal {L}({\dot{L}}^2,{\dot{H}}^{2})} \lesssim 1, \end{aligned}$$

from which the a priori estimate, that for almost every \( t \in [0,T] \),

$$\begin{aligned} \frac{\mathrm {d}}{\mathrm {d}t}\Vert u^\varepsilon (t)\Vert _{L^2}^2 \lesssim \Vert u^\varepsilon (t)\Vert _{L^2}^2 + (u^\varepsilon (t),f(t))_{L^2}. \end{aligned}$$
(C.2)

Moreover, by Gronwall’s inequality, we have

$$\begin{aligned} \Vert u^\varepsilon \Vert _{C([0,T],L^2)} \lesssim \Vert u_0\Vert _{L^2} + \Vert f\Vert _{L^1([0,T],L^2)}. \end{aligned}$$
(C.3)

Plugging it into (C.2), we obtain

$$\begin{aligned} \big \Vert \frac{\mathrm {d}}{\mathrm {d}t}\Vert u^\varepsilon (t)\Vert _{L^2}^2 \big \Vert _{L^1([0,T])} \lesssim \Vert u_0\Vert _{L^2}^2 + \Vert f\Vert _{L^1([0,T],L^2)}^2. \end{aligned}$$
(C.4)

The energy estimate (C.3), the hypothesis on R, and Arzela-Ascoli’s theorem imply the existence of a weak solution

$$\begin{aligned} u \in L^2([0,T],{\dot{L}}^2(\mathbb {T}^d)) \cap C([0,T],{\dot{H}}^{-\mu }(\mathbb {T}^d)) \end{aligned}$$

to (C.1). Then (C.4) and Arzela-Ascoli’s theorem again implies that \( t \mapsto \Vert u\Vert _{L^2}^2 \) is continuous in time. Therefore \( u \in C([0,T],{\dot{L}}^2(\mathbb {T}^d)) \). The energy estimate for u follows by Gronwall’s inequality as in (C.3), and the uniqueness follows from the energy estimate. \(\quad \square \)

Using the same method, we have the following corollary:

Corollary C.2

For \( \vec {w}_0 \in {\dot{L}}^2(\mathbb {T}^d) \), there exists a unique solution to the Cauchy problem (4.12), \( \vec {w} \in C([0,T],{\dot{L}}^2(\mathbb {T}^d)) \) with \( \vec {w}(0) = \vec {w}_0 \).

Corollary C.3

For \( \vec {w}_{h,0} \in {\dot{L}}^2(\mathbb {T}^d) \), \( f \in L^1([0,T]_s,{\dot{L}}^2(\mathbb {T}^d)) \), there exists a unique solution to the Cauchy problem (4.30), \( \vec {w}_h \in C([0,T]_s,{\dot{L}}^2(\mathbb {T}^d)) \) with \( \vec {w}_h(0) = \vec {w}_{h,0} \).

Similar results hold for the paradifferential equations.

Proposition C.4

Suppose \( s \geqq s' \geqq 0 \), \( \mu \geqq 3 + d/2 \), \( T > 0 \), \( \underline{u}\in \mathscr {C}^{0,\mu }(T,\varepsilon _0) \) for some \( \varepsilon _0 > 0 \) sufficiently small. Let \( P = P(\underline{u}) \) be defined by (3.12),

$$\begin{aligned} R \in L^\infty ([0,T],\mathcal {L}({\dot{H}}^{s},{\dot{H}}^{s})) \cap C([0,T],\mathcal {L}({\dot{H}}^{s},{\dot{H}}^{s'})), \end{aligned}$$

and let \( F \in L^1([0,T],{\dot{H}}^{s}(\mathbb {T}^d)) \). Then for \( u_0 \in {\dot{H}}^{s}(\mathbb {T}^d) \), the following Cauchy problem

$$\begin{aligned} (\partial _t+ P + R) u = F, \quad u(0) = u_0, \end{aligned}$$
(C.5)

admits a unique solution \( u \in C([0,T],{\dot{H}}^{s}(\mathbb {T}^d)) \), which moreover satisfies the estimate

$$\begin{aligned} \Vert u\Vert _{C([0,T],H^{s})} \lesssim \Vert u_0\Vert _{H^{s}} + \Vert F\Vert _{L^1([0,T],H^{s})}. \end{aligned}$$
(C.6)

Proof

The proof is almost the same as above, but here we choose \( J_\varepsilon = T_{j_\varepsilon } \) with \( j_\varepsilon \) defined as above, and use the following estimates:

$$\begin{aligned} \Vert [P,J_\varepsilon ]\Vert _{\mathcal {L}({\dot{H}}^{s},{\dot{H}}^{s})} \lesssim 1, \quad \Vert P-P^*\Vert _{\mathcal {L}({\dot{H}}^{s},{\dot{H}}^{s})} \lesssim 1, \quad \Vert J_\varepsilon - J_\varepsilon ^*\Vert _{\mathcal {L}({\dot{H}}^{s},{\dot{H}}^{s+2})} \lesssim 1. \end{aligned}$$

\(\square \)

Corollary C.5

Let the Range operator \( \mathcal {R}\) and the solution operator \( \mathcal {S}\) be formally defined in Section 4.1, then for all \( \mu \geqq 0 \),

$$\begin{aligned} \mathcal {R}: L^2([0,T],{\dot{H}}^{\mu }(\mathbb {T}^d)) \rightarrow {\dot{H}}^{\mu }(\mathbb {T}^d), \qquad \mathcal {S}: {\dot{H}}^{\mu }(\mathbb {T}^d) \rightarrow C([0,T],{\dot{H}}^{\mu }(\mathbb {T}^d)), \end{aligned}$$

and satisfies the estimates

$$\begin{aligned} \Vert \mathcal {R}\Vert _{\mathcal {L}(L^2([0,T],{\dot{H}}^{\mu }), {\dot{H}}^{\mu })} \lesssim 1, \qquad \Vert \mathcal {S}\Vert _{\mathcal {L}({\dot{H}}^{\mu }, C([0,T],{\dot{H}}^{\mu }))} \lesssim 1. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H. Control of Three Dimensional Water Waves. Arch Rational Mech Anal 236, 893–966 (2020). https://doi.org/10.1007/s00205-019-01485-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-019-01485-3

Navigation