Skip to main content

Advertisement

Log in

Early vegetation succession on gravel bars of Czech Carpathian streams

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Rivers with a natural flooding regime and gravel accumulations are an important natural habitat endangered by regulations and other types of human impact. Succession after disturbances by floods creates a mosaic of different vegetation types, some of them containing rare specialist species. We studied vegetation succession and changes in plant diversity on river gravel bars of four streams in the Western Carpathians and their foothills in the eastern Czech Republic. This area experienced extreme 50-year flood event in May 2010. Gravel bar vegetation was destroyed, some of the former bars were covered by sediments, and some new bars arose. We sampled gravel bar vegetation two months after the floods and repeated the sampling on each site during the next three years. Initial vegetation has developed through a sparse and species-rich stage into denser stands with more shade-tolerant species. In the fourth year, tall herbs, such as Urtica dioica, Phalaris arundinacea and the alien Impatiens glandulifera, dominated the communities, but shrub vegetation started to develop only in a few places. Species capable of vegetative dispersal prevailed over species dispersed by seeds only. Altitude and size of gravel/stone particles were identified as important factors affecting vegetation succession. The succession ran faster on gravelly substrates at lower altitudes than on stony substrates at higher altitudes. Although the studied streams are partly influenced by human interventions and host only few gravel bar specialists, they are of considerable conservation importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson KJ (2007) Temporal patterns in rates of community change during succession. Amer Naturalist 169:780–793

    Article  Google Scholar 

  • Babej J (2012) Biogeomorfologické mapování samovolně renaturalizovaného úseku Spojené Bečvy u Hustopečí nad Bečvou (Biogeomorphological mapping of naturally recovered section of the Bečva River in the vicinity of Hustopeče nad Bečvou). Master thesis, Masarykova univerzita, Brno

  • Babej J, Máčka Z, Ondrejka P, Peterová P (2016) Surface grain size variation within gravel bars: a case study of the River Opava, Czech Republic. Geogr Fis Dinam Quatern 39:3–12

    Google Scholar 

  • Bätz N, Verrecchia EP & Lane SN (2015) The role of soil in vegetated gravelly river braid plains: more than just a passive response? Earth Surf Processes Landforms 40:143–156

    Article  Google Scholar 

  • Brázdil R, Kirchner K (2007) Vybrané přírodní extrémy a jejich dopady na Moravě a ve Slezsku (Selected natural extremes and their impacts in Moravia and Silesia). Masarykova univerzita, Brno

    Google Scholar 

  • Bubík M, Krejčí O, Kirchner K (2004) Geologická minulost a přítomnost Frýdeckomístecka (Geological past and present of the Frýdek-Místek Region). Muzeum Beskyd, Frýdek Místek

    Google Scholar 

  • Chytrý M (ed) (2007) Vegetace České republiky 1. Travinná a keříčková vegetace (Vegetation of the Czech Republic 1. Grassland and Heathland Vegetation). Academia, Praha

  • Chytrý M (ed) (2009) Vegetace České republiky 2. Ruderální, plevelová, skalní a suťová vegetace (Vegetation of the Czech Republic 2. Ruderal, Weed, Rock and Scree vegetation) Academia, Praha

  • Chytrý M (ed) (2011) Vegetace České republiky 3. Vodní a mokřadní vegetace (Vegetation of the Czech Republic 3. Aquatic and Wetland Vegetation). Academia, Praha

  • Chytrý M (ed) (2013) Vegetace České republiky 4. Lesní a křovinná vegetace (Vegetation of the Czech Republic 4. Forest and Scrub Vegetation). Academia, Praha

  • Chytrý M, Rafajová M (2003) Czech National Phytosociological Database: basic statistics of the available vegetation-plot data. Preslia 75:1–15

    Google Scholar 

  • Chytrý M, Dražil T, Hájek M, Kalníková V, Preislerová Z, Šibík J, Ujházy K, Axmanová I, Bernátová D, Blanár D, Dančák M, Dřevojan P, Fajmon K, Galvánek D, Hájková P, Herben T, Hrivnák R, Janeček Š, Janišová M, Jiráská Š, Kliment J, Kochjarová J, Lepš J, Leskovjanská A, Merunková K, Mládek J, Slezák M, Šeffer J, Šefferová V, Škodová I, Uhlířová J, Ujházyová M, Vymazalová M (2015) The most species-rich plant communities in the Czech Republic and Slovakia (with new world records). Preslia 87:217–278

    Google Scholar 

  • Corenblit D, Steiger J, Gurnell, AM, Tabacchi E, Roques L (2009) Control of sediment dynamics by vegetation as a key function driving biogeomorphic succession within fluvial corridors. Earth Surface Processes Landforms 34:1790–1810

    Article  Google Scholar 

  • Danihelka J, Chrtek J Jr, Kaplan Z (2012) Checklist of vascular plants of the Czech Republic. Preslia 84:647–811

    Google Scholar 

  • Edwards PJ, Kollmann J, Gurnell AM, Petts GE, Tockner K, Ward JV (1999) A conceptual model of vegetation dynamics on gravel bars of a large Alpine river. Wetl Ecol Managem 7:141–153

    Article  Google Scholar 

  • Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulissen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobot 18:1–248

    Google Scholar 

  • European Commission (2013) Interpretation manual of European Union habitats. EUR 28. European Commission, Brussels

    Google Scholar 

  • Frank D, Klotz S (1990) Biologisch-ökologische Daten zur Flora der DDR. Martin-Luther-Universität, Halle-Wittenberg

    Google Scholar 

  • Galia T, Hradecký J (2012) Critical conditions for beginning of coarse sediment transport in torrents of Moravskoslezské Beskydy Mts (Western Carpathians). Carpathian J Earth Environm Sci 7:5–14

    Google Scholar 

  • Gilvear DJ, Cecil J, Parsons H (2000) Channel change and vegetation diversity on a low-angle alluvial fan, River Feshie, Scotland. Aquatic Conservation 10:53–71

    Article  Google Scholar 

  • Gilvear DJ, Francis R, Willby N, Gurnell AM (2008) Gravel bars: a key habitat of gravel-bed rivers for vegetation. In Habersack H, Piégay H, Rinaldi M (eds) Gravel-bed rivers VI: from process understanding to river restauration. Elsevier, Amsterdam, pp 677–700

  • Gostner W, Paternolli M, Schleiss A J, Scheidegger C, Werth S (2017) Gravel bar inundation frequency: an important parameter for understanding riparian corridor dynamics. Aquatic Sci 79:1–15

    Article  Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. John Wiley and Sons, Chichester

    Google Scholar 

  • Grohmanová L (2012) Succession and the development of alluvial communities after a flood in 1997. J Landscape Ecol 5:29–49

    Google Scholar 

  • Grulich V (2012) Red List of vascular plants of the Czech Republic. Preslia 84:631–645

    Google Scholar 

  • Gurnell AM, Petts GE, Hannah DM, Smith BP, Edwards PJ, Kollmann J, Ward JV, Tockner, K. (2001) Riparian vegetation and island formation along the gravel-bed Fiume Tagliamento, Italy. Earth Surface Processes Landforms 26:31–62

    Article  Google Scholar 

  • Gurnell AM, Tockner K, Edwards P, Petts GE (2005) Effects of deposited wood on biocomplexity of river corridors. Frontiers Ecol Environm 3:377–382

    Article  Google Scholar 

  • Gurnell AM, Surian N, Zanoni L (2009) Multi-thread river channels: a perspective on changing European alpine river systems. Aquatic Sci 71:253–265

    Article  Google Scholar 

  • Hennekens SM, Schaminée JHJ (2001) TURBOVEG, a comprehensive data base management system for vegetation data. J Veg Sci 12:589–591

    Article  Google Scholar 

  • Huston M (1979) A general hypothesis of species diversity. Amer Naturalist 113:81–101

    Article  Google Scholar 

  • Janssen JAM, Rodwell JS, García Criado M, Gubbay S, Haynes T, Nieto A, Sanders N, Landucci F, Loidi J, Ssymank A, Tahvanainen T, Valderrabano M, Acosta A, Aronsson M, Arts G, Attorre F, Bergmeier E, Bijlsma R-J, Bioret F, Biţă-Nicolae C, Biurrun I, Calix M, Capelo J, Čarni A, Chytrý M, Dengler J, Dimopoulos P, Essl F, Gardfjell H, Gigante D, Giusso del Galdo G, Hájek M, Jansen F, Jansen J, Kapfer J, Mickolajczak A, Molina JA, Molnár Z, Paternoster D, Piernik A, Poulin B, Renaux B, Schaminée JHJ, Šumberová K, Toivonen H, Tonteri T, Tsiripidis I, Tzonev R, Valachovič M (2016) European Red List of Habitats. Part 2. Terrestrial and freshwater habitats. Publications Office of the European Union, Luxembourg

  • Jeník J (1955) Sukcese rostlin na náplavech řeky Belé v Tatrách (Succession of plants on gravel bars of the Belá River in the Tatra Mountains). Acta Univ Carol 4:1–59

    Google Scholar 

  • Kalníková V, Eremiášová R (2013) Rozšíření třtiny pobřežní (Calamagrostis pseudophragmites (Haller f.) Koeler) na řece Ostravici (Distribution of Calamagrostis pseudophragmites (Haller f.) Koeler along the Ostravice River). Acta Carpathica Occid 4:3–14

    Google Scholar 

  • Karrenberg S, Kollmann J, Edwards PJ, Gurnell AM, Petts GE (2003) Patterns in woody vegetation along the active zone of a near-natural Alpine river. Basic Appl Ecol 4:157–166

    Article  Google Scholar 

  • Klečka J (2004) Early stadiums of floodplain forest succession in a wide river beds upon an example of Bečva. J Forest Sci 50:338–352

    Article  Google Scholar 

  • Klečková L (2013) Genetická variabilita původních populací vrby šedé (Salix elaeagnos) v České republice (Genetic variability of native populations of Rosemary willow (Salix elaeagnos) in the Czech Republic). Master thesis, Univerzita Palackého, Olomouc

    Google Scholar 

  • Kopecký K (1957) Sukcese rostlinných společenstev na náplavech Metuje a Olešenky v okolí Nového Města n. Met. (Succession of plant communities on fluvial deposits of the Metuje and Olešenka rivers in the vicinity of Nové Město n. Met.). Preslia 29:51–63

    Google Scholar 

  • Kopecký K (1961) Fytoekologický a fytocenologický rozbor porostů Phalaris arundinacea L. na náplavech Berounky (Phytoecological and phytosociological study of Phalaris arundinacea L. vegetation on fluvial deposits of Berounka River). Rozpr ČSAV, Řada Mat Přír Věd 71:1–105

    Google Scholar 

  • Kopecký K (1969) Calamagrostis pseudophragmites (Hall. Fil.) Koel. na Divoké Orlici v severovýchodních Čechách (Calamagrostis pseudophragmites (Hall. Fil) on Divoká Orlice River in North-eastern Bohemia). Zprávy Českoslov Bot Společn 4:113–117

    Google Scholar 

  • Kučera J, Váňa J, Hradílek Z (2012) Bryophyte flora of the Czech Republic: updated checklist and Red List and a brief analysis. Preslia 84:813–850

    Google Scholar 

  • Lacina J (2007) Desetiletý vývoj vegetačního krytu povodňového koryta Bečvy se zvláštním zřetelem na ekotony (The ten-year development of vegetation cover of the Bečva river flood channel with special regard to ecotones). Říční krajina 5:145–151

    Google Scholar 

  • Loučková B (2011) Vegetation-landform assemblages along selected rivers in the Czech Republic, a decade after a 500-year flood event. River Res Applic 28:1275–1288

    Article  Google Scholar 

  • Montgomery DR, Buffington JM (1998). Channel processes, classification, and response. In Naiman RJ and RE Bilby (eds) River ecology and management: lessons from the Pacific coastal ecoregion, Springer, New York, pp 13–42

  • Muhar S, Jungwirth M, Unfer G, Wiesner C, Poppe M, Schmutz S, Heohensinner S, Habersack H. (2007) Restoring riverine landscapes at the Drau River: successes and deficits in the context of ecological integrity. In Habersack H, Piégay H, Rinaldi M (eds) Gravel-bed rivers VI: from process understanding to river restauration. Elsevier, Amsterdam, pp 703–738

    Chapter  Google Scholar 

  • Müller N (1995) River dynamics and floodplain vegetation and their alterations due to human impact. Arch Hydrobiol Suppl 9:477–512

    Google Scholar 

  • Müller N, Scharm S (2001) The importance of seed rain and seed bank for the recolonization of gravel bars in alpine rivers. In Okuda S. (ed.) Studies on the vegetation of alluvial plants. Yokohama National University, pp 127–140

  • Muotka T, Virtanen R (1995) The stream as a habitat templet for bryophytes: speciesʼ distributions along gradients in disturbance and substratum heterogeneity. Freshwater Biol 33:141–160

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MH, Wagner H (2017) Vegan: community ecology package. R package version 2.4-2. Available at https://cran.r-project.org/package=vegan

  • Pánek T, Lenart J (2016) Landslide landscape of the Moravskoslezské Beskydy Mountains and their surroundings. In Pánek T, Hradecký J (eds) Landscapes and landforms of the Czech Republic. Springer, Dordrecht, pp 347–359

    Google Scholar 

  • Pettit NE, Froend RH (2001) Variability in flood disturbance and the impact on riparian tree recruitment in two contrasting river systems. Wetlands Ecol Managem 9:13–25

    Article  Google Scholar 

  • Pickett STA (1989) Space-for-time substitution as an alternative to long-term studies. In Likens GE (ed) Long-term studies in ecology. Springer, New York, pp 110–135

    Chapter  Google Scholar 

  • Pielou EC (1975) Ecological diversity. Wiley, New York

    Google Scholar 

  • Planty-Tabacchi AM, Tabacchi E, Naiman RJ, Deferrari C, Décamps H (1996) Invasibility of species-rich communities in riparian zones. Conservation Biol 10:598–607

    Article  Google Scholar 

  • Prach K. (1990) Směna dominant a rychlost sukcese (Dominant species exchange and rate of succession). Preslia 62:199–204

    Google Scholar 

  • Prach K (1994) Vegetation succession on river gravel bars across the Northwestern Himalayas, India. Arctic Alpine Res 26:349–353

    Article  Google Scholar 

  • Prach K, Pyšek P (1994) Clonal plants – what is their role in succession? Folia Geobot Phytotax 29:307–320

    Article  Google Scholar 

  • Prach K, Řehounková K (2006) Vegetation succession over broad geographical scales: Which factors determine the patterns? Preslia 78:469–480

    Google Scholar 

  • Prach K, Pyšek P, Šmilauer P (1993) On the rate of succession. Oikos 66:343–346

    Article  Google Scholar 

  • Prach K, Petřík P, Brož Z, Song JS (2014) Vegetation succession on river sediments along the Nakdong River, South Korea. Folia Geobot 49:507–519

    Article  Google Scholar 

  • Prach K, Tichý L, Lencová K, Adámek M, Koutecký T, Sádlo J, Bartošová A, Novák J, Kovář P, Jírová A, Šmilauer P, Řehounková K (2016) Does succession run towards potential natural vegetation? An analysis across seres. J Veg Sci 27:515–523

    Article  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at http://www.R-project.org

  • Richards K, Brasington J, Hughes F (2002) Geomorphic dynamics of floodplains: ecological implications and a potential modelling strategy. Freshwater Biol 47:559–579

    Article  Google Scholar 

  • Richardson DM, Holmes PM, Esler KJ, Galatowitsch SM, Stromberg JC, Kirkman SP, Pyšek P, Hobbs RJ (2007) Riparian vegetation: degradation, alien plant invasions, and restoration prospects. Diversity & Distrib 13:126–139

    Article  Google Scholar 

  • Siegrist R. (1913): Die Auenwälder der Aare. Mit besonderer Berücksichtigung ihres genetischen Zusammenhanges mit anderen flussbegleitenden Pflanzengesellschaften. Doctoral thesis, ETH, Zürich

    Google Scholar 

  • Skokanová H, Unar P, Janík D, Havlíček M (2015) Potential influence of river engineering in two West Carpathian rivers on the conservation management of Calamagrostis pseudophragmites. J Nat Conservation 25:42–50

    Article  Google Scholar 

  • Sochor M, Vašut RJ, Bártová E, Majeský Ľ, Mráček J (2013) Can gene flow among populations counteract the habitat loss of extremely fragile biotopes? An example from the population genetic structure in Salix daphnoides. Tree Genet Genomes 9:1193–1205

    Article  Google Scholar 

  • StatSoft Inc. (2001) STATISTICA (data analysis software system), version 13. Available at www.statsoft.com

  • Šigutová L (2009) Vegetace říčních náplavů vybraných toků Moravskoslezských Beskyd (River bank vegetation of selected streams in the Moravskoslezské Beskydy Mts). Master thesis, Palacký University, Olomouc

    Google Scholar 

  • Šilhán K (2012) Frequency of fast geomorphological processes in high-gradient streams: case study from the Moravskoslezské Beskydy Mts (Czech Republic) using dendrogeomorphic methods. Geochronometria 39:122–132

    Article  Google Scholar 

  • Škarpich V, Hradecký J, Dušek R (2013) Complex transformation of the geomorphic regime of channels in the forefield of the Moravskoslezské Beskydy Mts: case study of the Morávka River (Czech Republic). Catena 111:25–40

    Article  Google Scholar 

  • Šmilauer P, Lepš J (2014) Multivariate analysis of ecological data using CANOCO 5. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Štercl P, Řehánek T, Winkler I, Soukalová E (2011) Vyhodnocení povodní v květnu a červnu 2010 (Assessment of the floods in May and June 2010). VÚV TGM, Praha.

    Google Scholar 

  • ter Braak CJF, Šmilauer P (2012) CANOCO reference manual and user's guide: software for ordination (version 5.0). Biometris, Ithaca

  • Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453

    Article  Google Scholar 

  • Tockner K, Malard F, Ward JV (2000) An extension of the flood pulse concept. Hydrol Processes 14:2861–2883

    Article  Google Scholar 

  • Tockner K, Ward JV, Arscott DB, Edwards PJ, Kollmann J, Gurnell AM, Petts GE, Maiolini B (2003) The Tagliamento River: a model ecosystem of European importance. Aquatic Sci 65:239–253

    Article  CAS  Google Scholar 

  • Tockner K, Paetzold A, Karaus U, Claret C, Zettel J (2006) Ecology of braided rivers. In Smith GHS, Best JL, Bristow CS, Petts GE (eds) Braided rivers: process, deposits, ecology and management. Blackwell Publishing, Oxford, pp 339–359

  • Tockner K, Bunn SE, Gordon C, Naiman RJ, Quinn GP, Stanford JA (2008) Flood plains: critically threatened ecosystems. In Polunin NVC (ed) Aquatic ecosystems: trends and global prospects. Cambridge University Press, Cambridge, pp 45–61

    Chapter  Google Scholar 

  • Tolasz R (ed) (2007) Atlas podnebí Česka (Climate atlas of Czechia). Český hydrometeorologický ústav, Univerzita Palackého, Praha, Olomouc.

    Google Scholar 

  • Török P, Matus G, Papp M, Tóthmérész B (2008) Secondary succession of overgrazed Pannonian sandy grasslands. Preslia 80:73–85

    Google Scholar 

  • Turner MG, Baker WL, Peterson CJ, Peet RK (1998) Factors influencing succession: lessons from large, infrequent natural disturbances. Ecosystems 1:511–523

    Article  Google Scholar 

  • Uziębło AK (2011) Petasites kablikianus Tausch ex Berchtold as a pioneer species and its abilities to colonise initial habitats. Wydawnictwo Uniwersytetu Śląskiego, Katowice

    Google Scholar 

  • Uziębło AK, & Barć A (2015) Alluvial gravel bars as an example of habitat of the widest ecological spectrum in the mountain regions – a case of carpathians, southern poland. Ecologia Balkanica 7:1–11

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR (1980) The River Continuum Concept. Canad J Fish Aquatic Sci 37:130–137

    Article  Google Scholar 

  • Ward JV, Tockner K (2001) Biodiversity: towards a unifying theme for river ecology. Freshwater Biol 46:807–819

    Article  Google Scholar 

  • Walker LR, Del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge

  • Wardle P (1980) Primary succession in Westland National Park and its vicinity, New Zealand. New Zealand J Bot 18:221–232

    Article  Google Scholar 

  • Westhoff V, van der Maarel E (1978) The Braun-Blanquet approach. In Whittaker RH (ed), Classification of plant communities. W. Junk, The Hague, pp 287–399

    Chapter  Google Scholar 

  • Zaliberová M (1982) Ufervegetation des Poprad-Flussgebietes. In Špániková A, Zaliberová M, Die Vegetation des Poprad-Flussgebietes (die Becken Popradská kotlina und Ľubovnianska kotlina). Vegetácia ČSSR, B5. Veda, Bratislava, pp 131–302

Download references

Acknowledgements

We thank Karel Prach and Martin Večeřa for valuable comments on the manuscript, Svatava Kubešová and Jitka Laburdová for their help with bryophyte identification, Vít Grulich and Vladimír Řehořek for identification of some specimens of vascular plants, Ondřej Hájek for preparing the map, and Jakub Těšitel for help with ordination analysis. The study was supported by the Czech Science Foundation (project 14-36079G, Centre of Excellence Pladias).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronika Kalníková.

Electronic supplementary material

ESM 1

(DOCX 5718 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalníková, V., Chytrý, K. & Chytrý, M. Early vegetation succession on gravel bars of Czech Carpathian streams. Folia Geobot 53, 317–332 (2018). https://doi.org/10.1007/s12224-018-9323-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-018-9323-6

Keywords

Navigation