Skip to main content

Advertisement

Log in

Combustion Characteristics and Pollutants in the Flue Gas During Shoe Manufacturing Waste Combustion in a 2.5 MWth Pilot-Scale Circulating Fluidized Bed

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Shoe manufacturing waste (SMW) was combusted in a 2.5 MWth pilot-scale circulating fluidized bed combustor (CFBC) to demonstrate the feasibility of energy recovery and provide useful information for a fluidized bed combustor design specifically for this waste. The experimental results confirmed that the stable combustion could be achieved in this CFBC with a constant feed flow rate of 400 kg/h, a primary air flow rate of about 1650 Nm3/h and a second air flow rate of about 1800 Nm3/h. The pollutants in the flue gas (ITFG) were measured with the average values of CO2 at 9.9%, CO at 2145.04 ppm, NOx at 81.67 ppm, SO2 at 32.62 ppm, HCl at 3.12 ppm, HF at 0.57 ppm, Pb at 0.0029 mg/m3, Cd < 0.001 mg/m3, Hg at 20.938 ng/Nm3, and PCDD/ PCDF at 1.17E−03 ng TEQ/m3, respectively. CO and SO2 emissions exceeded the legal limits in China, while the combustion efficiency was relatively low. Therefore, in order to meet the CO emission limit, some useful suggestions were put forward for the future CFBC design to burn SMW. A flue gas desulfurization system is essential to reduce the SO2 emission. Very low Cu content, high level of residual carbon in the fly ash and high SO2 concentration ITFG resulted in low PCDD/PCDF emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SMW:

Shoe manufacturing waste

CFB:

Circulating fluidized bed

FBC:

Fluidized bed combustor

CFBC:

Circulating fluidized bed combustor

ITFG:

In the flue gas

PCDD:

Polychlorinated dibenzo-p-dioxin

PCDF:

Polychlorinated dibenzo-furan

MSW:

Municipal solid waste

PLC:

Programmable logic controller

IBHX:

In-bed heat exchanger

LHV:

Low heating value

V:

Volatile matter

FC:

Fixed carbon

Moist:

Moisture

\(\rho\) :

The emission concentration at baseline oxygen content, mg/m3

\({\rho _0}\) :

The emission concentration of actual site measurements, mg/m3

\({\varphi _0}\left( {{O_2}} \right)\) :

The initial oxygen content of combustion-supporting gas, %

\(\varphi ^{\prime}({O_2})\) :

The oxygen content of actual site measurements, %

X:

The mass concentrate of the pollutant emission in the flue gas, mg/m3

v:

The volume concentrate of the pollutant emission in the flue gas, ppm

MW:

The molecular mass of gas

CO (%):

The percentages of CO in the flue gas

CO2 (%):

The percentages of CO2 in the flue gas

PAH:

Polycyclic aromatic hydrocarbon

CP:

Chlorophenol

References

  1. Rahimifard, S., Staikos, T., Coates, G.: Recycling of footwear products. A position paper prepared by the Centre for Sustainable Manufacturing and Reuse/Recycling Technologies (SMART). Loughborough University, Leicestershire (2007). http://www.centreforsmart.co.uk/system/downloads/attachments/000/000/002/original/Footwear_recycling_position_paper.pdf

  2. Staikos, T., Rahimifard, S.: An end-of-life decision support tool for product recovery considerations in the footwear industry. Int. J. Comput. Integr. Manuf. 20, 602–615 (2007)

    Google Scholar 

  3. Staikos, T., Rahimifard, S.: A decision-making model for waste management in the footwear industry. Int. J. Prod. Res. 45, 4403–4422 (2007)

    MATH  Google Scholar 

  4. Staikos, T., Rahimifard, S.: Post-consumer waste management issues in the footwear industry. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 221, 363–368 (2007). https://doi.org/10.1243/09544054JEM732SC

    Article  MATH  Google Scholar 

  5. Tatàno, F., Acerbi, N., Monterubbiano, C., et al.: Shoe manufacturing wastes: characterisation of properties and recovery options. Resour Conserv Recycl. 66, 66–75 (2012)

    Google Scholar 

  6. Chinese Statistics Yearbook Compiling Committee: Chinese statistics yearbook 2006. Chinese Statistics Press, Beijing (2006)

    Google Scholar 

  7. Chinese Statistics Yearbook Compiling Committee: Chinese statistics yearbook 2016. Chinese Statistics Press, Beijing (2006)

    Google Scholar 

  8. Lee, M.J., Rahimifard, S.: An air-based automated material recycling system for postconsumer footwear products. Resour. Conserv. Recycl. 69, 90–99 (2012)

    Google Scholar 

  9. Lopes, D., Ferreira, M.J., Russo, R., et al.: Natural and synthetic rubber/waste—ethylene-vinyl acetate composites for sustainable application in the footwear industry. J. Clean. Prod. 92, 230–236 (2015)

    Google Scholar 

  10. Rodrigues, R., Marcilio, N.R., Trierweiler, J.O., et al.: Cogasification of footwear leather waste and high ash coal: a thermodynamic analysis. In: 27th annual international Pittsburgh coal conference (2010)

  11. Sekaran, G., Swarnalatha, S., Srinivasulu, T.: Solid waste management in leather sector. J. Des. Manuf. Technol. 1(1), 47–52 (2007)

    Google Scholar 

  12. Swarnalatha, S., Srinivasulu, T., Srimurali, M., et al.: Safe disposal of toxic chrome buffing dust generated from leather industries. J. Hazard. Mater. 150(2), 290–299 (2008)

    Google Scholar 

  13. Bahillo, A., Armesto, L., Cabanillas, A., et al.: NOX and N2O emissions during fluidized bed combustion of leather wastes. J. Energy Resour. Technol. 128(2), 99–103 (2006)

    Google Scholar 

  14. Bahillo, A., Armesto, L., Cabanillas, A., et al.: Thermal valorization of footwear leather wastes in bubbling fluidized bed combustion. Waste Manag. 24(9), 935–944 (2004)

    Google Scholar 

  15. Ninduangdee, P., Kuprianov, V.I.: A study on combustion of oil palm empty fruit bunch in a fluidized bed using alternative bed materials: performance, emissions, and time-domain changes in the bed condition. Appl. Energy 176, 34–48 (2016)

    Google Scholar 

  16. Sun, Z.A., Jin, B.S., Zhang, M.Y., et al.: Experimental study on cotton stalk combustion in a circulating fluidized bed. Appl. Energy 85(11), 1027–1040 (2008)

    Google Scholar 

  17. Youssef, M.A., Wahid, S.S., Mohamed, M.A., et al.: Experimental study on Egyptian biomass combustion in circulating fluidized bed. Appl. Energy 86(12), 2644–2650 (2009)

    Google Scholar 

  18. Van Caneghem, J., Brems, A., Lievens, P., et al.: Fluidized bed waste incinerators: design, operational and environmental issues. Prog. Energy Combust. Sci. 38(4), 551–582 (2012)

    Google Scholar 

  19. Hussain, A., Ahmed, I., Sait, H.H., et al.: Experimental and simulation study of fluidization behavior of palm biomass in a circulating fluidized bed riser. Ind. Eng. Chem. Res. 52(49), 17529–17537 (2013)

    Google Scholar 

  20. Shimizu, T., Han, J., Choi, S., et al.: Fluidized-bed combustion characteristics of cedar pellets by using an alternative bed material. Energy Fuel 20(6), 2737–2742 (2006)

    Google Scholar 

  21. Lin, W., Dam-Johansen, K., Frandsen, F.: Agglomeration in bio-fuel fired fluidized bed combustors. Chem. Eng. J. 96(1), 171–185 (2003)

    Google Scholar 

  22. Jiménez, T., Turchiuli, C., Dumoulin, E.: Particles agglomeration in a conical fluidized bed in relation with air temperature profiles. Chem. Eng. Sci. 61(18), 5954–5961 (2006)

    Google Scholar 

  23. Sjösten, J., Golriz, M.R., Grace, J.R.: Further study on the influence of particle coating on fluidized bed heat transfer. Int. J. Heat Mass Transf. 49(21), 3800–3806 (2006)

    MATH  Google Scholar 

  24. Zhou, C., Rosén, C., Engvall, K.: Biomass oxygen/steam gasification in a pressurized bubbling fluidized bed: agglomeration behaviour. Appl. Energy 172, 230–250 (2016)

    Google Scholar 

  25. Arvelakis, S., Vourliotis, P., Kakaras, E., et al.: Effect of leaching on the ash behavior of wheat straw and olive residue during fluidized bed combustion. Biomass Bioenergy 20(6), 459–470 (2001)

    Google Scholar 

  26. Godinho, M., Marcilio, N.R., Faria Vilela, A.C., et al.: Gasification and combustion of the footwear leather wastes. J. Am. Leather Chem. Asssoc. 102(6), 182–190 (2007)

    Google Scholar 

  27. Godinho, M., Birriel, E.J., Marcilio, N.R., et al.: High-temperature corrosion during the thermal treatment of footwear leather wastes. Fuel Process Technol. 92(5), 1019–1025 (2011)

    Google Scholar 

  28. Godinho, M., Marcilio, N.R., Masotti, L., et al.: Formation of PCDD and PCDF in the thermal treatment of footwear leather wastes. J. Hazard. Mater. 167(1), 1100–1105 (2009)

    Google Scholar 

  29. Knöbig, T., Werther, J., Åmand, L.E., et al.: Comparison of large- and small-scale circulating fluidized bed combustors with respect to pollutant formation and reduction for different fuels. Fuel 77(14), 1635–1642 (1998)

    Google Scholar 

  30. Leckner, B., Åmand, L.E., Lücke, K., et al.: Gaseous emissions from co-combustion of sewage sludge and coal/wood in a fluidized bed. Fuel 83(4–5), 477–486 (2004)

    Google Scholar 

  31. Krzywański, J., Nowak, W.: Neurocomputing approach for the prediction of NOx emissions from CFBC in air-fired and oxygen-enriched atmospheres. J. Power Technol. 97(2), 75–84 (2017)

    Google Scholar 

  32. Krzywański, J., Rajczyk, R., Nowak, W.: Model research of gas emissions from lignite and biomass co-combustion in a large scale CFB boiler. Chem. Process. Eng. 35(2), 217–231 (2014)

    Google Scholar 

  33. Krzywanski, J., Nowak, W.: Artificial intelligence treatment of SO2 emissions from CFBC in air and oxygen-enriched conditions. J. Energy Eng. 142(1), 04015017 (2016)

    Google Scholar 

  34. McKay, G.: Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration. Chem. Eng. J. 86(3), 343–368 (2002)

    Google Scholar 

  35. Duan, L., Sun, H., Jiang, Y., et al.: Partitioning of trace elements, As, Ba, Cd, Cr, Cu, Mn and Pb, in a 2.5 MWth pilot-scale circulating fluidised bed combustor burning an anthracite and a bituminous coal. Fuel Process. Technol. 146, 1–8 (2016)

    Google Scholar 

  36. The determination of particulates and sampling methods of gaseous pollutants from exhaust gas of stationary source (GB/T 16157-1996). Ministry of Environmental Protection of China, Beijing (1996) (in Chinese)

  37. General rules for inductively coupled plasma-atomic emission spectrometry (JY/T 015-1996). State Education Commission of China, Beijing, China (1996) (in Chinese)

  38. Ambient air and waste gas determination of PCDDs and PCDFs isotope dilution HRGC–HRMS (HJ77.2). Ministry of Environmental Protection of China, Beijing (2008) (in Chinese)

  39. Proximate analysis of coal-instrumental method (GB/T 30732-2014). Ministry of Environmental Protection of China, Beijing, China (2014) (in Chinese)

  40. Batistella, L., Silva, V., Suzin, R.C., et al.: Gaseous emissions from sewage sludge combustion in a moving bed combustor. Waste Manag. 46, 430–439 (2015)

    Google Scholar 

  41. Standard for Pollution Control on the Municipal Solid Waste Incineration (GB 18485-2014). Ministry of Environmental Protection of China, Beijing, China (2014) (in Chinese)

  42. Lombardi, L., Carnevale, E., Corti, A.: A review of technologies and performances of thermal treatment systems for energy recovery from waste. Waste Manag. 37, 26–44 (2015)

    Google Scholar 

  43. Chen, D., Christensen, T.H.: Life-cycle assessment (EASEWASTE) of two municipal solid waste incineration technologies in China. Waste Manag. Res. 28(6), 508–519 (2010)

    Google Scholar 

  44. Patumsawad, S., Cliffe, K.R.: Experimental study on fluidised bed combustion of high moisture municipal solid waste. Energy Convers. Manag. 43(17), 2329–2340 (2002)

    Google Scholar 

  45. Atimtay, A.T., Kayahan, U., Unlu, A., et al.: Co-firing of pine chips with Turkish lignites in 750 kWth circulating fluidized bed combustion system. Bioresour. Technol. 224, 601–610 (2017)

    Google Scholar 

  46. Permchart, W., Kouprianov, V.I.: Emission performance and combustion efficiency of a conical fluidized-bed combustor firing various biomass fuels. Bioresour. Technol. 92(1), 83–91 (2004)

    Google Scholar 

  47. Mahmoudi, S., Baeyens, J., Seville, J.P.K.: NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass. Biomass Bioenergy 34(9), 1393–1409 (2010)

    Google Scholar 

  48. Manovic, V., Grubor, B., Loncarevic, D.: Modeling of inherent SO2 capture in coal particles during combustion in fluidized bed. Chem. Eng. Sci. 61(5), 1676–1685 (2006)

    Google Scholar 

  49. Sun, P., Hui, S., Gao, Z., et al.: Experimental investigation on the combustion and heat transfer characteristics of wide size biomass co-firing in 0.2 MW circulating fluidized bed. Appl. Therm. Eng. 52(2), 284–292 (2013)

    Google Scholar 

  50. Su, X., Zhang, L., Xiao, Y., et al.: Evaluation of a flue gas cleaning system of a circulating fluidized bed incineration power plant by the analysis of pollutant emissions. Powder Technol. 286, 9–15 (2015)

    Google Scholar 

  51. Krawczyk, E., Zajemska, M., Wyleciał, T.: The chemical mechanism of SOx formation and elimination in coal combustion process. CHEMIK 1(67), 856–862 (2013)

    Google Scholar 

  52. Wang, X., Huang, Y., Liu, C., et al.: Dynamic volatilization behavior of Pb and Cd during fixed bed waste incineration: Effect of chlorine and calcium oxide. Fuel 192, 1–9 (2017)

    Google Scholar 

  53. Wang, X., Huang, Y., Zhong, Z., et al.: Control of inhalable particulate lead emission from incinerator using kaolin in two addition modes. Fuel Process. Technol. 119(1), 228–235 (2014)

    Google Scholar 

  54. Hatanaka, T., Imagawa, T., Takeuchi, M.: Formation of PCDD/Fs in artificial solid waste incineration in a laboratory-scale fluidized-bed reactor: influence of contents and forms of chlorine sources in high-temperature combustion. Environ. Sci. Technol. 34(18), 3920–3924 (2000)

    Google Scholar 

  55. Zhou, H., Meng, A., Long, Y., et al.: A review of dioxin-related substances during municipal solid waste incineration. Waste Manag. 36, 106–118 (2015)

    Google Scholar 

  56. Karasek, F.W., Dickson, L.C.: Model studies of polychlorinated dibenzo-p-dioxin formation during municipal refuse incineration. Science 237, 754–775 (1987)

    Google Scholar 

  57. Ryu, J.Y., Mulholland, J.A., Takeuchi, M., et al.: CuCl2-catalyzed PCDD/F formation and congener patterns from phenols. Chemosphere 61(9), 1312–1326 (2005)

    Google Scholar 

  58. Wikström, E., Ryan, S., Touati, A., et al.: Importance of chlorine speciation on de novo formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Environ. Sci. Technol. 37(6), 1108–1113 (2003)

    Google Scholar 

  59. Chandler, A.J., Eighmy, T.T., Hjelmar, O., et al.: Municipal solid waste incinerator residues. Elsevier, Amsterdam (1997)

    Google Scholar 

  60. Yu, J., Qiao, Y., Sun, L., et al.: Detoxification of ashes from a fluidized bed waste incinerator. Chemosphere 134, 346–354 (2015)

    Google Scholar 

  61. Zhang, Y., Cetin, B., Likos, W.J., et al.: Impacts of pH on leaching potential of elements from MSW incineration fly ash. Fuel 184, 815–825 (2016)

    Google Scholar 

  62. Kuzuhara, S., Sato, H., Kasai, E., et al.: Influence of metallic chlorides on the formation of PCDD/Fs during low-temperature oxidation of carbon. Environ. Sci. Technol. 37(11), 2431–2435 (2003)

    Google Scholar 

  63. Chin, Y.T., Lin, C., Chang-Chien, G.P., et al.: PCDD/F formation catalyzed by the metal chlorides and chlorinated aromatic compounds in fly ash. Aerosol Air Qual. Res. 12, 228–236 (2012)

    Google Scholar 

  64. Chang, M.B., Huang, T.F.: The effects of temperature and oxygen content on the PCDD/PCDFs formation in MSW fly ash. Chemosphere 40(2), 159–164 (2000)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51676040, 51476031). The authors would also like to acknowledge the provision of a scholarship to Mr. Changqi Liu by the China Scholarship Council (CSC) which enables him to be able to complete part of the reported work at the University of Nottingham.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaji Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Huang, Y., Dong, L. et al. Combustion Characteristics and Pollutants in the Flue Gas During Shoe Manufacturing Waste Combustion in a 2.5 MWth Pilot-Scale Circulating Fluidized Bed. Waste Biomass Valor 11, 1603–1614 (2020). https://doi.org/10.1007/s12649-018-0476-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0476-6

Keywords

Navigation