Skip to main content
  • Research Paper
  • Published:

Effect of severe thermal treatment on spruce and beech wood lignins

Effet d’un traitement thermique sévère sur les lignines du bois d’épicéa et de hêtre

Abstract

  • • The structure, proportion and mode of assembly of lignin, celluloses and hemicelluloses have marked effects on the reaction mechanisms during thermal treatment and therefore have a strong influence on the quality of the final product. The effect of treatment conditions, including severe conditions (up to 553 K) and treatment duration (up to 8 h) on the structure of native spruce and beech lignins was studied.

  • • Lignin content was determined by the Klason method and lignin structure was evaluated by thioacidolysis.

  • • The results highlighted the strong reactivity of the native spruce and beech lignins towards severe heat treatments. The distinct susceptibility of syringyl (S) and guaiacyl (G) units towards thermal treatment is confirmed by comparing the data for beech and spruce samples. The most severe treatment of spruce wood (280 °C) induced a dramatic enrichment in lignin content together with the almost complete disappearance of G lignin units, whereas a more moderate treatment substantially changed lignin structure by degradation reactions that affect the p-hydroxyphenyl (H) and G lignin units similarly.

  • • Thioacidolysis revealed that the thermal treatment induces the appearance of vinyl ether structures in spruce lignins. The decreased yield of the G and S thioacidolysis monomers reflects the progressive disappearance of G and S lignin units only involved in β-O-4 bonds and the formation of condensed linkages in proportions related to treatment severity. In severe conditions, β-O-4 linked S units are more degraded than their G homologues.

Résumé

  • • La structure, la proportion et le mode de montage de la lignine, des celluloses et des hémicelluloses ont eu des effets marqués sur les mécanismes de la réaction au cours du traitement thermique et, par conséquent, ont eu une forte influence sur la qualité du produit final. L’effet des conditions de traitement, y compris des conditions sévères (jusqu’à 553 K) et la durée du traitement (jusqu’à 8 h) sur la structure de lignines de l’épicéa et du hêtre ont été étudiés.

  • • La teneur en lignine a été déterminée par la méthode Klason et la structure de la lignine a été évaluée par thioacidolyse.

  • • Les résultats ont mis en évidence la forte réactivité des lignines de l’épicéa et du hêtre vis-à-vis des traitements thermiques sévères. La sensibilité des différentes unités syringyl (S) et guaiacyl (G) vis-à-vis du traitement thermique est confirmée par comparaison des données obtenues avec les échantillons du hêtre et de l’épicéa. Le traitement le plus sévère (280 °C) du bois d’épicéa a induit un enrichissement spectaculaire en lignine ainsi que la quasi-disparition des unités de la lignine G, alors qu’un traitement plus modéré a sensiblement modifié la structure de la lignine par des réactions de dégradation qui affectent les p-hydroxyphényl (H) et les unités de lignine G.

  • • La thioacidolyse a révélé que le traitement thermique induit l’apparition de structures de vinyl éthers dans la lignine de l’épicéa. La diminution de production de la G et S thioacidolyses monomères reflète la disparition progressive des unités de lignine G et S impliquées seulement dans des liaisons β-O-4 et la formation de linkages de condensation en proportions de la sévérité du traitement. Dans des conditions difficiles, les unités S liées β-O-4 sont plus dégradées que leurs homologues G.

References

  • Ahhaji A., El Bakali I., George B., and Merlin A., 2003. Analyse par spectroscopie de résonance paramagnétique électronique (RPE) de bois traités thermiquement exposés à un rayonnement de type solaire. Annales Gis-bois (Eds.), Nancy, France.

    Google Scholar 

  • Arias B., Pevida C., Fermoso J., Plaza M.G., Rubier F., and Pisa J.J., 2008. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process. Technol. 89: 169–175.

    Article  CAS  Google Scholar 

  • Baumberger S., Dole P., and Lapierre C., 2002. Using transgenic poplars to elucidate the relationship between the structure and the thermal properties of lignins. J. Agric. Food Chem. 50: 2450–2453.

    Article  PubMed  CAS  Google Scholar 

  • Bilbao R., Mastral J.F., Aldea M.E., and Ceamanosa J., 1997. The influence of the percentage of oxygen in the atmosphere on the thermal decomposition of lignocellulosic materials. J. Anal. Appl. Pyrolysis 42: 189–202.

    Article  CAS  Google Scholar 

  • Blazek J., Buryan P., Grouset D., Soudais Y., and Tekac V., 2001. Study of the thermical degradation of lignin in the inert atmosphere. Entropie 235/236: 6–11.

    Google Scholar 

  • Boonstra M., van Acker J., Tjeerdsma B., and Kegel E.V., 2007. Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Ann. For. Sci. 64: 679–690.

    Article  Google Scholar 

  • Borrega M. and Kärenlampi1 P.P., 2007. Mechanical behavior of heat-treated spruce (Picea abies) wood at constant moisture content and ambient humidity. Holz Roh Werkst. 66: 63–69.

    Article  Google Scholar 

  • Bourgois J., Bartholin M.C., and Guyonnet R., 1989. Thermal treatment of wood: analysis of the obtained product. Wood Sci. Technol. 23: 303–310.

    Article  CAS  Google Scholar 

  • Branca C. and Di Blasi C., 2003. Kinetics of the isothermal degradation of wood in the temperature range 528–708K. J. Anal. Appl. Pyrolysis 67: 207–219.

    Article  CAS  Google Scholar 

  • Brezny R., Surina L., and Kosik M., 1984. Low temperature thermolysis of lignins. II. Thermofractography and thermal analysis of β-O-4 model compounds. Holzforschung 38: 19–24.

    Article  CAS  Google Scholar 

  • Chakar F.S. and Ragauskas A.J., 2004. Review of current and future softwood kraft lignin process chemistry. Ind. Crop. Prod. 20: 131–141.

    Article  CAS  Google Scholar 

  • Chiang V.L. and Funaoka M., 1988. The formation and quantity of diphenylmethane type structures in residual lignin during kraft delignification of Douglas-fir. Holzforschung 42: 385–391.

    Article  CAS  Google Scholar 

  • Dence C.W., 1992. The determination of lignin. In: Dence C.W. (Ed.), Method in lignin chemistry, Springer-Verlag, Berlin, Heiderberg, New York, pp. 33–61.

    Google Scholar 

  • Fengel D. and Wegner G., 1989. Wood — Chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin, New-York, 344 p.

    Google Scholar 

  • Funaoka M., Kako T., and Abe L., 1990. Condensation of lignin during heating of wood. Wood Sci. Technol. 24: 277–288.

    Article  CAS  Google Scholar 

  • Gellerstedt G., Lindfors E.L., Lapierre C., and Monties B., 1984. Structural changes in lignin during kraft cooking. Part 2. Characterization by acidolysis. Svensk Papperstidning: 61–67.

  • Gellerstedt G., Majtnerova A., and Zhang L., 2004. Towards a new concept of lignin condensation in kraft pulping. Initial results. C.R. Biol. 327: 817–826.

    Article  PubMed  CAS  Google Scholar 

  • Kocaefe D., Chaudhry B., Poncsak S., Bouazara M., and Pichette A., 2006. Thermogravimetric study of high temperature treatment of aspen: effect of treatment parameters on weight loss and mechanical properties. J. Mater. Sci. 42: 854–866.

    Article  Google Scholar 

  • Kotilainen R.A., Toivanen T.J., and Alen R.J., 2000. FTIR monitoring of chemical changes in softwood during heating. J. Wood Chem. Technol. 20: 307–320.

    Article  CAS  Google Scholar 

  • Lindberg J.J., Levon K., and Kuusela T., 2003. Modification of lignin. Acta Polymer. 39: 47–50.

    Article  Google Scholar 

  • Mouras S., Girard P., Rousset P., Permadi P., Dirol D., and Labat G., 2002. Propriétés physiques de bois peu durables soumis à un traitement de pyrolyse ménagée. Ann. For. Sci. 59: 317–326.

    Article  Google Scholar 

  • Nguila Inari G., Petrissans M., and Gerardin P., 2007. Chemical reactivity of heat-treated wood. Wood Sci. Technol. 41: 157–168.

    Article  CAS  Google Scholar 

  • Nuopponen M., Vuorinen T., Jämsä S., and Viitaniemi P., 2005. Thermal modifications in softwood studied by FTIR and UV resonance Raman spectroscopies. J. Wood Chem. 24: 13–26.

    Article  Google Scholar 

  • Placet V., Passard J., and Perré P., 2008. Viscoelastic properties of wood across the grain measured under water-saturated conditions up to 135 °C: evidence of thermal degradation. J. Mater. Sci. 43: 3210–3217

    Article  CAS  Google Scholar 

  • Rapp A.O., 2001. Review on heat treatments of wood. COST Action E22 — Environmental of wood protection, Antibes, France.

    Google Scholar 

  • Rolando C., Montiés B., and Lapierre C., 1992. Thioacidolysis. In: Lin S.Y. and Dence C.W. (Eds.), Methods in lignin chemistry, Springer-verlag, Berlin, pp. 334–349.

    Google Scholar 

  • Rousset P., Turner I., Donnot A., and Perré P., 2006. Choix d’un modèle de pyrolyse ménagée du bois à l’échelle de la microparticule en vue de la modélisation macroscopique. Ann. For. Sci. 63: 213–229.

    Article  CAS  Google Scholar 

  • Scheffer T.C. and Eslyn W.E., 1961. Effect of heat on the decay resitance of wood. For. Prod. J. 46: 485–490.

    Google Scholar 

  • Stamm A.J., 1946. Heat-stabilized wood. Industrial and engineering chemistry. 38: 630–634.

    Article  CAS  Google Scholar 

  • Tjeerdsma B., Boonstra M., Pizzi A., Tekeley P., and Militz H., 1998. Characterisation of thermally modified wood: molecular reasons for wood performence improvement. Holz Roh Werkst. 56: 149–153.

    Article  CAS  Google Scholar 

  • Vallet C., Alvez E., Mila I., Pollet B., Weiland J., Guyonnet R., and Lapierre C., 2001. Rectification du pin maritime : structure des lignines et propriétés du bois. In: ar.bo.lor. (Ed.), Les Cahiers scientifiques du bois, Nancy.

  • Westermark U., Samulesson B., and Lundquist K., 1997. Homolytic cleavage of the β-ether bond in phenolic β-O-4 ether structures ant its significance in high-yield pulping and lignin analysis. Nord. Pap. Res. J. 12: 150–154.

    Article  CAS  Google Scholar 

  • Windeisen E., Strobel C., and Wegener G., 2007. Chemical changes during the production of thermo-treated beech wood. Wood Sci. Technol. 41: 523–536.

    Article  CAS  Google Scholar 

  • Windeisen E. and Wegener G., 2008. Behaviour of lignin during thermal treatments of wood. Ind. Crop. Prod. 27: 157–162.

    Article  CAS  Google Scholar 

  • Yildiz S., Gezer E., and Yildiz U.C., 2006. Mechanical and chemical behavior of spruce wood modified by heat. Build. Environ. 41: 1762–1766.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Rousset.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rousset, P., Lapierre, C., Pollet, B. et al. Effect of severe thermal treatment on spruce and beech wood lignins. Ann. For. Sci. 66, 110 (2009). https://doi.org/10.1051/forest/2008078

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2008078

Keywords

Mots-clés