Skip to main content
Log in

On a quasilinear Poisson equation in the plane

  • Original Paper
  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the Dirichlet problem for the quasilinear partial differential equation \(\triangle u(z) = h(z)\cdot f(u(z))\) in the unit disk \({\mathbb {D}}\subset {\mathbb {C}}\) with arbitrary continuous boundary data \(\varphi :\partial {\mathbb {D}}\rightarrow {\mathbb {R}}\). The multiplier \(h:{\mathbb {D}}\rightarrow {\mathbb {R}}\) is assumed to be in the class \(L^p({\mathbb {D}}),\)\(p>1,\) and the continuous function \(f:\mathbb {R}\rightarrow {\mathbb {R}}\) is such that \(f(t)/t\rightarrow 0\) as \(t\rightarrow \infty .\) Applying the potential theory and the Leray–Schauder approach, we prove the existence of continuous solutions u of the problem in the Sobolev class \(W^{2,p}_{\mathrm{loc}}({\mathbb {D}})\). Furthermore, we show that \(u\in C^{1,\alpha }_{\mathrm{loc}}({\mathbb {D}})\) with \(\alpha = (p-2)/p\) if \(p>2\) and, in particular, with arbitrary \(\alpha \in (0,1)\) if the multiplier h is essentially bounded. In the latter case, if in addition \(\varphi \) is Hölder continuous of some order \(\beta \in (0,1)\), then u is Hölder continuous of the same order in \(\overline{{\mathbb {D}}}\). We extend these results to arbitrary smooth (\(C^1\)) domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors, L.V.: Lectures on Quasiconformal Mappings, Van Nostrand Mathematical Studies, vol. 10. Van Nostrand Co. Inc, Toronto (1966)

    Google Scholar 

  2. Aris, R.: The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, vol. I and II. Clarendon Press, Oxford (1975)

    MATH  Google Scholar 

  3. Arsove, M.G.: The Osgood–Taylor–Caratheodory theorem. Proc. Am. Math. Soc. 19, 38–44 (1968)

    MathSciNet  MATH  Google Scholar 

  4. Barenblatt, G.I., Zel’dovic, J.B., Librovich, V.B., Mahviladze, G.M.: The Mathematical Theory of Combustion and Explosions. Consult. Bureau, New York (1985)

    Google Scholar 

  5. Bojarski, B., Gutlyanskii, V., Martio, O., Ryazanov, V.: Infinitesimal Geometry of Quasiconformal and Bi-Lipschitz Mappings in the Plane, EMS Tracts in Mathematics, vol. 19. European Mathematical Society, Zürich (2013)

    Book  Google Scholar 

  6. Borsuk, M., Kondratiev, V.: Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains, North-Holland Mathematical Library, vol. 69. Elsevier Science, Amsterdam (2006)

    MATH  Google Scholar 

  7. Caratheodory, C.: Uber die gegenseitige Beziehung der Rander bei der konformen Abbildungen des Inneren einer Jordanschen Kurve auf einen Kreis. Math. Ann. 73, 305–320 (1913)

    Article  MathSciNet  Google Scholar 

  8. Collingwood, E.F., Lohwator, A.J.: The Theory of Cluster Sets, Cambridge Tracts in Mathematics and Mathematical Physics, vol. 56. Cambridge Univ. Press, Cambridge (1966)

    Google Scholar 

  9. Diaz, J.I.: Nonlinear Partial Differential Equations and Free Boundaries, Volume I Elliptic Equations, Research Notes in Mathematics, vol. 106. Pitman, Boston (1985)

    Google Scholar 

  10. Dunford, N., Schwartz, J.T.: Linear Operators. I. General Theory, Pure and Applied Mathematics, vol. 7. Interscience Publishers, New York (1958)

    MATH  Google Scholar 

  11. Federer, H.: Geometric Measure Theory, Springer, Berlin, 1969; transl. as Geometricheskaya teoriya mery, Nauka, Moscow (1987)

  12. Garnett, J.B., Marshall, D.E.: Harmonic Measure. Cambridge Univ. Press, Cambridge (2005)

    Book  Google Scholar 

  13. Giaquinta, M., Martinazzi, L.: An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs, 2nd edn. Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], 11. Edizioni della Normale, Pisa (2012)

  14. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, vol. 224. Springer, Berlin (1983)

    Book  Google Scholar 

  15. Gutlyanskii, V.Y., Nesmelova, O.V., Ryazanov, V.I.: On quasiconformal maps and semi-linear equations in the plane, Ukr. Mat. Visn. 14(2), 161–191 (2017); transl. in J. Math. Sci. (USA) 229(1), 7–29 (2018)

  16. Gutlyanskii, V., Ryazanov, V., Srebro, U., Yakubov, E.: The Beltrami Equation: A Geometric Approach, Developments in Mathematics, vol. 26. Springer, New York (2012)

    Book  Google Scholar 

  17. Hörmander, L.: Notions of Convexity, Progress in Mathematics, vol. 127. Birkhäuser Boston Inc, Boston (1994)

    MATH  Google Scholar 

  18. Hörmander, L.: The Analysis of Linear Partial Differential Operators. V. I. Distribution Theory and Fourier Analysis Grundlehren der Mathematischen Wissenschaften, vol. 256. Springer, Berlin (1983)

    Google Scholar 

  19. Kalaj, D.: On some integral operators related to the Poisson equation. Integr. Equ. Oper. Theory 72(4), 563–575 (2012)

    Article  MathSciNet  Google Scholar 

  20. Kalaj, D., Vujadinovich, D.: The solution operator of the inhomogeneous Dirichlet problem in the unit ball. Proc. Am. Math. Soc. 144(2), 623–635 (2016)

    Article  MathSciNet  Google Scholar 

  21. Koosis, P.: Introduction to \(H^p\) Spaces, Cambridge Tracts in Mathematics, vol. 115. Cambridge Univ. Press, Cambridge (1998)

    Google Scholar 

  22. Kuzin, I., Pohozaev, S.: Entire Solutions of Semilinear Elliptic Equations, Progress in Nonlinear Differential Equations and their Applications, vol. 33. Birkhäuser, Basel (1997)

    MATH  Google Scholar 

  23. Landis, E.M.: Second Order Equations of Elliptic and Parabolic Type, Translations of Mathematical Monographs, vol. 171. American Mathematical Society, Providence (1998)

    Google Scholar 

  24. Landkof, N.S.: Foundations of Modern Potential Theory, Grundlehren der mathematischen Wissenschaften, vol. 180. Springer, New York (1972)

    Book  Google Scholar 

  25. Lehto, O., Virtanen, K.I.: Quasiconformal Mappings in the Plane, 2nd edn. Springer, Berlin (1973)

    Book  Google Scholar 

  26. Leray, J., Schauder, Ju: Topologie et equations fonctionnelles (French). Ann. Sci. Ecole Norm. Sup. 51(3), 45–78 (1934)

    Article  Google Scholar 

  27. Marcus, M., Veron, L.: Nonlinear Second Order Elliptic Equations Involving Measures, De Gruyter Series in Nonlinear Analysis and Applications, vol. 21. De Gruyter, Berlin (2014)

    Google Scholar 

  28. Martio, O., Ryazanov, V., Srebro, U., Yakubov, E.: Moduli in Modern Mapping Theory. Springer Monographs in Mathematics. Springer, New York (2009)

    MATH  Google Scholar 

  29. Osgood, W., Taylor, E.: Conformal transformations on the boundaries of their regions of definition. Trans. Am. Math. Soc. 14, 277–298 (1913)

    MathSciNet  MATH  Google Scholar 

  30. Pokhozhaev, S.I.: On an equation of combustion theory. Mat. Zametki 88(1), 53–62 (2010); transl. in Math. Notes 88(1–2), 48–56 (2010)

  31. Ransford, T.: Potential Theory in the Complex Plane, London Mathematical Society Student Texts, vol. 28. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  32. Rudin, W.: Real and Complex Analysis. McGraw-Hill Book Co., New York (1987)

    MATH  Google Scholar 

  33. Sobolev, S.L.: Some Applications of Functional Analysis in Mathematical Physics. Translations of Mathematical Monographs, vol. 90. AMS, Providence (1991)

    Google Scholar 

  34. Vekua, I.N.: Generalized Analytic Functions. Pergamon Press, London (1962)

    MATH  Google Scholar 

  35. Warschawski, S.E.: On differentiability at the boundary in conformal mapping. Proc. Am. Math. Soc. 12, 614–620 (1961)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by grants of Ministry of Education and Science of Ukraine, Project No. is 0119U100421. We would like also to thank our reviewers for careful reading the text and useful remarks and suggestions that made possible us essentially to improve the representation of our results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Ryazanov.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutlyanskiĭ, V., Nesmelova, O. & Ryazanov, V. On a quasilinear Poisson equation in the plane. Anal.Math.Phys. 10, 6 (2020). https://doi.org/10.1007/s13324-019-00345-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-019-00345-3

Keywords

Mathematics Subject Classification

Navigation