Skip to main content

Advertisement

Log in

O-GlcNAcylation as a Therapeutic Target for Alzheimer’s Disease

  • Review
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common cause of dementia and the number of elderly patients suffering from AD has been steadily increasing. Despite worldwide efforts to cope with this disease, little progress has been achieved with regard to identification of effective therapeutics. Thus, active research focusing on identification of new therapeutic targets of AD is ongoing. Among the new targets, post-translational modifications which modify the properties of mature proteins have gained attention. O-GlcNAcylation, a type of PTM that attaches O-linked β-N-acetylglucosamine (O-GlcNAc) to a protein, is being sought as a new target to treat AD pathologies. O-GlcNAcylation has been known to modify the two important components of AD pathological hallmarks, amyloid precursor protein, and tau protein. In addition, elevating O-GlcNAcylation levels in AD animal models has been shown to be effective in alleviating AD-associated pathology. Although studies investigating the precise mechanism of reversal of AD pathologies by targeting O-GlcNAcylation are not yet complete, it is clearly important to examine O-GlcNAcylation regulation as a target of AD therapeutics. This review highlights the mechanisms of O-GlcNAcylation and its role as a potential therapeutic target under physiological and pathological AD conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

AGM:

N-acetylglucosamine phosphoglucomutase

AGX:

N-acetylglucosamine-1-phosphorylase

ALS:

Amyotrophic lateral sclerosis

APH-1:

Anterior pharynx-defective 1

APOE4:

Apolipoprotein E4

APP:

Amyloid precursor protein

ATP5A:

ATP synthase subunit α

Aβ:

Amyloid-beta

BACE1:

β-Secretase

BBB:

Blood brain barrier

CDK2:

Cyclin dependent kinase 2

CEBPβ:

CCAAT enhancer-binding protein β

CT:

Computerized tomography

EOAD:

Early onset AD

ER:

Endoplasmic reticulum

ERβ:

Estrogen receptor β

FAD:

Familiar AD

Fruc-6-P:

Fructose-6-phosphate

G6P-I:

Glucose-6-phosphate isomerase

GFAT:

Glutamine–fructose-6-phosphate-transaminase

Glc-6-P:

Glucose-6-phosphate

GlcN:

Glucosamine

GlcN-6-P:

GlcN-6-phosphate

GlcNAc:

N-acetylglucosamine

GlcNAc-1-P:

GlcNAc-1-phosphate

GlcNAc-6-P:

GlcNAc-6-phosphate

GLUT1:

Glucose transporter 1

GLUT3:

Glucose transporter 3

GNAT:

Glucosamine-6-phosphate acetyl transferase

GSK3β:

Glycogen synthase kinase 3β

HAT:

Histone acetyltransferase

HBP:

Hexosamine biosynthetic pathway

HD:

Huntington’s disease

HK:

Hexokinase

IR:

Insulin receptors

LOAD:

Late onset AD

lOGA:

Long OGA

MAPT:

Microtubule-associated protein tau

MCI:

Mild cognitive impairment

mOGT:

Mitochondrial OGT

MRI:

Magnetic resonance imaging

MTBRs:

Microtubule-binding repeats

NAC:

Non-amyloid β component

ncOGT:

Nucleocytoplasmic OGT

NFs:

Neurofilaments

NFTs:

Neurofibrillary tangles

nNOS:

Neuronal nitric oxide synthase

OGA:

O-GlcNAcase

O-GlcNAc:

O-linked β-N-acetylglucosamin

OGT:

O-GlcNAc transferase

PD:

Parkinson’s disease

PEN2:

Presenilin enhancer 2

PPO:

Phosphoinositide binding

PS1:

Presenilin1

PS2:

Presenilin2

PTMs:

Post-translational modifications

ROS:

Reactive oxygen species

sAPPα:

Soluble APPα

sAPPβ:

Soluble APPβ

SDS:

Sodium dodecyl sulfate

Ser:

Serine

SOD1:

Superoxide dismutase 1

sOGA:

Short OGA

sOGT:

Short OGT

T2DM:

Type 2 diabetes mellitus

Thr:

Threonine

TPR:

Tetratricopeptide repeat

UDP-GlcNAc:

Uridine diphosphate N-acetylglucosamine

XBP1:

X-box binding protein1

References

  • Acosta-Baena, N., Sepulveda-Falla, D., Lopera-Gomez, C. M., Jaramillo-Elorza, M. C., Moreno, S., Aguirre-Acevedo, D. C. et al. (2011). Pre-dementia clinical stages in presenilin 1 E280A familial early-onset Alzheimer's disease: A retrospective cohort study. Lancet Neurology,10, 213–220.

    Article  CAS  PubMed  Google Scholar 

  • Akan, I., Olivier-Van Stichelen, S., Bond, M. R., & Hanover, J. A. (2018). Nutrient-driven O-GlcNAc in proteostasis and neurodegeneration. Journal of Neurochemistry,144, 7–34.

    Article  CAS  PubMed  Google Scholar 

  • Akimoto, Y., Comer, F. I., Cole, R. N., Kudo, A., Kawakami, H., Hirano, H., et al. (2003). Localization of the O-GlcNAc transferase and O-GlcNAc-modified proteins in rat cerebellar cortex. Brain Research,966, 194–205.

    Article  CAS  PubMed  Google Scholar 

  • Alford, S., Patel, D., Perakakis, N., & Mantzoros, C. S. (2018). Obesity as a risk factor for Alzheimer's disease: Weighing the evidence. Obesity Reviews,19, 269–280.

    Article  CAS  PubMed  Google Scholar 

  • Alonso, A., Zaidi, T., Novak, M., Grundke-Iqbal, I., & Iqbal, K. (2001). Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proceedings of the National Academy of Sciences of the USA,98, 6923–6928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso, J., Schimpl, M., & van Aalten, D. M. F. (2014). O-GlcNAcase: Promiscuous hexosaminidase or key regulator of O-GlcNAc signaling? Journal of Biological Chemistry,289, 34433–34439.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Andersen, K. K., Olsen, T. S., Dehlendorff, C., & Kammersgaard, L. P. (2009). Hemorrhagic and ischemic strokes compared: Stroke severity, mortality, and risk factors. Stroke,40, 2068–2072.

    Article  PubMed  Google Scholar 

  • Andrés-Bergós, J., Tardio, L., Larranaga-Vera, A., Gómez, R., Herrero-Beaumont, G., & Largo, R. (2012). The increase in O-linked N-acetylglucosamine protein modification stimulates chondrogenic differentiation both in vitro and in vivo. Journal of Biological Chemistry,287, 33615–33628.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Arnold, C. S., Johnson, G. V., Cole, R. N., Dong, D. L., Lee, M., & Hart, G. W. (1996). The microtubule-associated protein tau is extensively modified with O-linked N-acetylglucosamine. Journal of Biological Chemistry,271, 28741–28744.

    Article  CAS  PubMed  Google Scholar 

  • Arvanitakis, Z., Wilson, R. S., Bienias, J. L., Evans, D. A., & Bennett, D. A. (2004). Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Archives of Neurology,61, 661–666.

    Article  PubMed  Google Scholar 

  • Athauda, D., & Foltynie, T. (2016). Insulin resistance and Parkinson's disease: A new target for disease modification? Progress in Neurobiology,145–146, 98–120.

    Article  PubMed  CAS  Google Scholar 

  • Baek, S. H., & Park, S. J. (2017). Inhibition of Drp1 ameliorates synaptic depression, abeta deposition, and cognitive impairment in an Alzheimer's disease model. Journal of Neuroscience,37, 5099–5110.

    Article  CAS  PubMed  Google Scholar 

  • Bahn, G., Park, J.-S., Yun, U. J., Lee, Y. J., Choi, Y., Park, J. S. et al. (2019). NRF2/ARE pathway negatively regulates BACE1 expression and ameliorates cognitive deficits in mouse Alzheimer’s models. Proceedings of the National Academy of Sciences of the USA,116, 12516–12523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baik, S. H., Fane, M., Park, J. H., Cheng, Y. L., Yang-Wei Fann, D., Yun, U. J. et al. (2015). Pin1 promotes neuronal death in stroke by stabilizing Notch intracellular domain. Annals of Neurology,77, 504–516.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee, P. S., Lagerlof, O., & Hart, G. W. (2016). Roles of O-GlcNAc in chronic diseases of aging. Molecular Aspects of Medicine,51, 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee, P. S., Ma, J., & Hart, G. W. (2015). Diabetes-associated dysregulation of O-GlcNAcylation in rat cardiac mitochondria. Proceedings of the National Academy of Sciences of the USA,112, 6050–6055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell, K. F., Zheng, L., Fahrenholz, F., & Cuello, A. C. (2008). ADAM-10 over-expression increases cortical synaptogenesis. Neurobiology of Aging,29, 554–565.

    Article  CAS  PubMed  Google Scholar 

  • Benedict, C., Hallschmid, M., Hatke, A., Schultes, B., Fehm, H. L., Born, J., et al. (2004). Intranasal insulin improves memory in humans. Psychoneuroendocrinology,29, 1326–1334.

    Article  CAS  PubMed  Google Scholar 

  • Bertram, L., Blacker, D., Mullin, K., Keeney, D., Jones, J., Basu, S. et al. (2000). Evidence for genetic linkage of Alzheimer's disease to chromosome 10q. Science,290, 2302–2303.

    Article  CAS  PubMed  Google Scholar 

  • Bisaglia, M., Trolio, A., Bellanda, M., Bergantino, E., Bubacco, L., & Mammi, S. (2006). Structure and topology of the non-amyloid-beta component fragment of human alpha-synuclein bound to micelles: Implications for the aggregation process. Protein Science,15, 1408–1416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biwi, J., & Biot, C. (2018). The many ways by which O-GlcNAcylation may orchestrate the diversity of complex glycosylations. Molecules,23, E2858.

    Article  PubMed  CAS  Google Scholar 

  • Bloom, G. S. (2014). Amyloid-beta and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol.,71, 505–508.

    Article  PubMed  Google Scholar 

  • Bolduc, D. M., Montagna, D. R., Seghers, M. C., Wolfe, M. S., & Selkoe, D. J. (2016). The amyloid-beta forming tripeptide cleavage mechanism of γ-secretase. Elife,5, e17578.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bomfim, T. R., Forny-Germano, L., Sathler, L. B., Brito-Moreira, J., Houzel, J. C., Decker, H. et al. (2012). An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer's disease-associated Abeta oligomers. Journal of Clinical Investigation,122, 1339–1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bond, M. R., & Hanover, J. A. (2013). O-GlcNAc cycling: A link between metabolism and chronic disease. Annual Review of Nutrition,33, 205–229.

    Article  CAS  PubMed  Google Scholar 

  • Bond, M. R., & Hanover, J. A. (2015). A little sugar goes a long way: The cell biology of O-GlcNAc. Journal of Cell Biology,208, 869–880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bondi, M. W., Edmonds, E. C., & Salmon, D. P. (2017). Alzheimer's disease: Past, present, and future. Journal of the International Neuropsychological Society,23, 818–831.

    Article  PubMed  PubMed Central  Google Scholar 

  • Borodkin, V. S., Schimpl, M., Gundogdu, M., Rafie, K., Dorfmueller, H. C., Robinson, D. A., et al. (2014). Bisubstrate UDP-peptide conjugates as human O-GlcNAc transferase inhibitors. The Biochemical Journal,457, 497–502.

    Article  CAS  PubMed  Google Scholar 

  • Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica,82, 239–259.

    Article  CAS  PubMed  Google Scholar 

  • Brockhausen, I., Nair, D. G., Chen, M., Yang, X., Allingham, J. S., Szarek, W. A., et al. (2016). Human acetyl-CoA:glucosamine-6-phosphate N-acetyltransferase 1 has a relaxed donor specificity and transfers acyl groups up to four carbons in length. Biochemistry and Cell Biology,94, 197–204.

    Article  CAS  PubMed  Google Scholar 

  • Bronner, I. F., ter Meulen, B. C., Azmani, A., Severijnen, L. A., Willemsen, R., Kamphorst, W. et al. (2005). Hereditary Pick's disease with the G272V tau mutation shows predominant three-repeat tau pathology. Brain,128, 2645–2653.

    Article  CAS  PubMed  Google Scholar 

  • Bubu, O. M., Brannick, M., Mortimer, J., Umasabor-Bubu, O., Sebastião, Y. V., Wen, Y. et al. (2017). Sleep, cognitive impairment, and Alzheimer’s disease: A systematic review and meta-analysis. Sleep,40, 32.

    Article  Google Scholar 

  • Buee, L., Bussiere, T., Buee-Scherrer, V., Delacourte, A., & Hof, P. R. (2000). Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Research Reviews,33, 95–130.

    Article  CAS  PubMed  Google Scholar 

  • Cai, H., Cong, W.-N., Ji, S., Rothman, S., Maudsley, S., & Martin, B. (2012). Metabolic dysfunction in Alzheimer's disease and related neurodegenerative disorders. Current Alzheimer Research,9, 5–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campion, D., Dumanchin, C., Hannequin, D., Dubois, B., Belliard, S., Puel, M. et al. (1999). Early-onset autosomal dominant Alzheimer disease: Prevalence, genetic heterogeneity, and mutation spectrum. American Journal of Human Genetics,65, 664–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro, D. M., Dillon, C., Machnicki, G., & Allegri, R. F. (2010). The economic cost of Alzheimer's disease: Family or public health burden? Dementia Neuropsychologia,4, 262–267.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cha, M. Y., Cho, H. J., Kim, C., Jung, Y. O., Kang, M. J., Murray, M. E. et al. (2015). Mitochondrial ATP synthase activity is impaired by suppressed O-GlcNAcylation in Alzheimer's disease. Human Molecular Genetics,24, 6492–6504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, R., Gong, P., Tao, T., Gao, Y., Shen, J., Yan, Y. et al. (2017). O-GlcNAc glycosylation of nNOS promotes neuronal apoptosis following glutamate excitotoxicity. Cellular and Molecular Neurobiology,37, 1465–1475.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y. X., Du, J. T., Zhou, L. X., Liu, X. H., Zhao, Y. F., Nakanishi, H., et al. (2006). Alternative O-GlcNAcylation/O-phosphorylation of Ser16 induce different conformational disturbances to the N terminus of murine estrogen receptor beta. Chemistry & Biology,13, 937–944.

    Article  CAS  Google Scholar 

  • Cheng, D., Noble, J., Tang, M. X., Schupf, N., Mayeux, R., & Luchsinger, J. A. (2011). Type 2 diabetes and late-onset Alzheimer's disease. Dementia and Geriatric Cognitive Disorders,31, 424–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiaradonna, F., Ricciardiello, F., & Palorini, R. (2018). The nutrient-sensing hexosamine biosynthetic pathway as the hub of cancer metabolic rewiring. Cells,7, E53.

    Article  PubMed  CAS  Google Scholar 

  • Chow, V. W., Mattson, M. P., Wong, P. C., & Gleichmann, M. (2010). An overview of APP processing enzymes and products. Neuromolecular Medicine,12, 1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chun, Y. S., Kwon, O. H., & Chung, S. (2017). O-GlcNAcylation of amyloid-beta precursor protein at threonine 576 residue regulates trafficking and processing. Biochemical and Biophysical Research Communications,490, 486–491.

    Article  CAS  PubMed  Google Scholar 

  • Chun, Y. S., Park, Y., Oh, H. G., Kim, T. W., Yang, H. O., Park, M. K., et al. (2015). O-GlcNAcylation promotes non-amyloidogenic processing of amyloid-beta protein precursor via inhibition of endocytosis from the plasma membrane. Journal of Alzheimer's Disease,44, 261–275.

    Article  CAS  PubMed  Google Scholar 

  • Citron, M., Westaway, D., Xia, W., Carlson, G., Diehl, T., Levesque, G. et al. (1997). Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nature Medicine,3, 67–72.

    Article  CAS  PubMed  Google Scholar 

  • Cole, R. N., & Hart, G. W. (2001). Cytosolic O-glycosylation is abundant in nerve terminals. Journal of Neurochemistry,79, 1080–1089.

    Article  CAS  PubMed  Google Scholar 

  • Comtesse, N., Maldener, E., & Meese, E. (2001). Identification of a nuclear variant of MGEA5, a cytoplasmic hyaluronidase and a beta-N-acetylglucosaminidase. Biochemical and Biophysical Research Communications,283, 634–640.

    Article  CAS  PubMed  Google Scholar 

  • Dayalu, P., & Albin, R. L. (2015). Huntington disease: Pathogenesis and treatment. Neurologic Clinics,33, 101–114.

    Article  PubMed  Google Scholar 

  • De Felice, F. G., Lourenco, M. V., & Ferreira, S. T. (2014). How does brain insulin resistance develop in Alzheimer's disease? Alzheimer’s Dementia,10, S26–S32.

    Article  PubMed  Google Scholar 

  • De Jonghe, C., Esselens, C., Kumar-Singh, S., Craessaerts, K., Serneels, S., Checler, F. et al. (2001). Pathogenic APP mutations near the gamma-secretase cleavage site differentially affect Abeta secretion and APP C-terminal fragment stability. Human Molecular Genetics,10, 1665–1671.

    Article  PubMed  Google Scholar 

  • de Queiroz, R. M., Carvalho, E., & Dias, W. B. (2014). O-GlcNAcylation: The sweet side of the cancer. Frontiers in Oncologys,4, 132–132.

    Google Scholar 

  • Delbeuck, X., Van der Linden, M., & Collette, F. (2003). Alzheimer's disease as a disconnection syndrome? Neuropsychology Review,13, 79–92.

    Article  CAS  PubMed  Google Scholar 

  • Deng, Y., Li, B., Liu, F., Iqbal, K., Grundke-Iqbal, I., Brandt, R., et al. (2008). Regulation between O-GlcNAcylation and phosphorylation of neurofilament-M and their dysregulation in Alzheimer disease. The FASEB Journal,22, 138–145.

    Article  CAS  PubMed  Google Scholar 

  • Deng, Y., Li, B., Liu, Y., Iqbal, K., Grundke-Iqbal, I., & Gong, C. X. (2009). Dysregulation of insulin signaling, glucose transporters, O-GlcNAcylation, and phosphorylation of tau and neurofilaments in the brain: Implication for Alzheimer's disease. American Journal of Pathology,175, 2089–2098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donev, R., Kolev, M., Millet, B., & Thome, J. (2009). Neuronal death in Alzheimer's disease and therapeutic opportunities. Journal of Cellular and Molecular Medicine,13, 4329–4348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, D. L., Xu, Z. S., Chevrier, M. R., Cotter, R. J., Cleveland, D. W., & Hart, G. W. (1993). Glycosylation of mammalian neurofilaments. Localization of multiple O-linked N-acetylglucosamine moieties on neurofilament polypeptides L and M. Journal of Biological Chemistry,268, 16679–16687.

    CAS  PubMed  Google Scholar 

  • Dorfmueller, H. C., Borodkin, V. S., Blair, D. E., Pathak, S., Navratilova, I., & van Aalten, D. M. (2011). Substrate and product analogues as human O-GlcNAc transferase inhibitors. Amino Acids,40, 781–792.

    Article  CAS  PubMed  Google Scholar 

  • Dorfmueller, H. C., Borodkin, V. S., Schimpl, M., & van Aalten, D. M. (2009). GlcNAcstatins are nanomolar inhibitors of human O-GlcNAcase inducing cellular hyper-O-GlcNAcylation. The Biochemical Journal,420, 221–227.

    Article  CAS  PubMed  Google Scholar 

  • Dorfmueller, H. C., & van Aalten, D. M. (2010). Screening-based discovery of drug-like O-GlcNAcase inhibitor scaffolds. FEBS Letters,584, 694–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorszewska, J., Prendecki, M., Oczkowska, A., Dezor, M., & Kozubski, W. (2016). Molecular basis of familial and sporadic Alzheimer's disease. Current Alzheimer Research,13, 952–963.

    Article  CAS  PubMed  Google Scholar 

  • Duan, A. R., Jonasson, E. M., Alberico, E. O., Li, C., Scripture, J. P., Miller, R. A. et al. (2017). Interactions between tau and different conformations of tubulin: Implications for tau function and mechanism. Journal of Molecular Biology,429, 1424–1438.

    Article  CAS  PubMed  Google Scholar 

  • Dulin, F., Léveillé, F., Ortega, J. B., Mornon, J.-P., Buisson, A., Callebaut, I., et al. (2008). p3 peptide, a truncated form of Aβ devoid of synaptotoxic effect, does not assemble into soluble oligomers. FEBS Letters,582, 1865–1870.

    Article  CAS  PubMed  Google Scholar 

  • Dumurgier, J., Schraen, S., Gabelle, A., Vercruysse, O., Bombois, S., Laplanche, J.-L. et al. (2015). Cerebrospinal fluid amyloid-β 42/40 ratio in clinical setting of memory centers: A multicentric study. Alzheimer’s Research & Therapy,7, 30.

    Article  CAS  Google Scholar 

  • Dunn, L., Allen, G. F., Mamais, A., Ling, H., Li, A., Duberley, K. E. et al. (2014). Dysregulation of glucose metabolism is an early event in sporadic Parkinson's disease. Neurobiology of Aging,35, 1111–1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Haj, M., Gallouj, K., Dehon, H., Roche, J., & Laroi, F. (2018). Hallucinations in Alzheimer's disease: Failure to suppress irrelevant memories. Cognitive Neuropsychiatry,23, 142–153.

    Article  PubMed  Google Scholar 

  • Endo, A., Kakiki, K., & Misato, T. (1970). Feedback inhibition of l-glutamine d-fructose 6-phosphate amidotransferase by uridine diphosphate N-acetylglucosamine in Neurospora crassa. Journal of Bacteriology,103, 588–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feigin, V. L., Forouzanfar, M. H., Krishnamurthi, R., Mensah, G. A., Connor, M., Bennett, D. A. et al. (2014). Global and regional burden of stroke during 1990–2010: Findings from the Global Burden of Disease Study 2010. Lancet,383, 245–254.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrarini, L., Palm, W. M., Olofsen, H., van Buchem, M. A., Reiber, J. H., & Admiraal-Behloul, F. (2006). Shape differences of the brain ventricles in Alzheimer's disease. Neuroimage,32, 1060–1069.

    Article  PubMed  Google Scholar 

  • Ferreira, L. K., & Busatto, G. F. (2011). Neuroimaging in Alzheimer's disease: Current role in clinical practice and potential future applications. Clinics,66(Suppl 1), 19–24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrer, C. M., Sodi, V. L., & Reginato, M. J. (2016). O-GlcNAcylation in cancer biology: Linking metabolism and signaling. Journal of Molecular Biology,428, 3282–3294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferri, C. P., Prince, M., Brayne, C., Brodaty, H., Fratiglioni, L., Ganguli, M. et al. (2005). Global prevalence of dementia: A Delphi consensus study. Lancet,366, 2112–2117.

    Article  PubMed  PubMed Central  Google Scholar 

  • Firbank, M. J., Yarnall, A. J., Lawson, R. A., Duncan, G. W., Khoo, T. K., Petrides, G. S. et al. (2017). Cerebral glucose metabolism and cognition in newly diagnosed Parkinson's disease: ICICLE-PD study. Journal of Neurology, Neurosurgery and Psychiatry,88, 310–316.

    Article  CAS  PubMed  Google Scholar 

  • Foley, J. M., Salat, D. H., Stricker, N. H., Zink, T. A., Grande, L. J., McGlinchey, R. E. et al. (2014). Interactive effects of apolipoprotein E4 and diabetes risk on later myelinating white matter regions in neurologically healthy older aged adults. American Journal of Alzheimer's Disease & Other Dementias,29, 222–235.

    Article  Google Scholar 

  • Forster, S., Welleford, A. S., Triplett, J. C., Sultana, R., Schmitz, B., & Butterfield, D. A. (2014). Increased O-GlcNAc levels correlate with decreased O-GlcNAcase levels in Alzheimer disease brain. Biochimica et Biophysica Acta,1842, 1333–1339.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forstl, H., & Kurz, A. (1999). Clinical features of Alzheimer's disease. European Archives of Psychiatry and Clinical Neuroscience,249, 288–290.

    Article  CAS  PubMed  Google Scholar 

  • Forsythe, M. E., Love, D. C., Lazarus, B. D., Kim, E. J., Prinz, W. A., Ashwell, G. et al. (2006). Caenorhabditis elegans ortholog of a diabetes susceptibility locus: Oga-1 (O-GlcNAcase) knockout impacts O-GlcNAc cycling, metabolism, and dauer. Proceedings of the National Academy of Sciences of the USA,103, 11952–11957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox, N. C., Freeborough, P. A., & Rossor, M. N. (1996). Visualisation and quantification of rates of atrophy in Alzheimer's disease. Lancet,348, 94–97.

    Article  CAS  PubMed  Google Scholar 

  • Frolich, L., Blum-Degen, D., Bernstein, H. G., Engelsberger, S., Humrich, J., Laufer, S. et al. (1998). Brain insulin and insulin receptors in aging and sporadic Alzheimer's disease. Journal of Neural Transmission,105, 423–438.

    Article  CAS  PubMed  Google Scholar 

  • Frozza, R. L., Lourenco, M. V., & De Felice, F. G. (2018). Challenges for Alzheimer's disease therapy: Insights from novel mechanisms beyond memory defects. Frontiers in Neuroscience,12, 37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukushima, N., Furuta, D., Hidaka, Y., Moriyama, R., & Tsujiuchi, T. (2009). Post-translational modifications of tubulin in the nervous system. Journal of Neurochemistry,109, 683–693.

    Article  CAS  PubMed  Google Scholar 

  • Gao, Y., Wells, L., Comer, F. I., Parker, G. J., & Hart, G. W. (2001). Dynamic O-glycosylation of nuclear and cytosolic proteins: Cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain. Journal of Biological Chemistry,276, 9838–9845.

    Article  CAS  PubMed  Google Scholar 

  • Gasparini, L., Terni, B., & Spillantini, M. G. (2007). Frontotemporal dementia with tau pathology. Neurodegenerative Diseases,4, 236–253.

    Article  PubMed  Google Scholar 

  • Gatta, E., Lefebvre, T., Gaetani, S., Dos Santos, M., Marrocco, J., Mir, A.-M. et al. (2016). Evidence for an imbalance between tau O-GlcNAcylation and phosphorylation in the hippocampus of a mouse model of Alzheimer’s disease. Pharmacological Research,105, 186–197.

    Article  CAS  PubMed  Google Scholar 

  • Glenner, G. G., & Wong, C. W. (1984). Alzheimer's disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochemical and Biophysical Research Communications,120, 885–890.

    Article  CAS  PubMed  Google Scholar 

  • Gloster, T. M., & Vocadlo, D. J. (2010). Mechanism, structure, and inhibition of O-GlcNAc processing enzymes. Current Signal Transduction Therapy,5, 74–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gloster, T. M., Zandberg, W. F., Heinonen, J. E., Shen, D. L., Deng, L., & Vocadlo, D. J. (2011). Hijacking a biosynthetic pathway yields a glycosyltransferase inhibitor within cells. Nature Chemical Biology,7, 174–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goedert, M., Spillantini, M. G., Jakes, R., Rutherford, D., & Crowther, R. A. (1989). Multiple isoforms of human microtubule-associated protein tau: Sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron,3, 519–526.

    Article  CAS  PubMed  Google Scholar 

  • Goetz, C. G., Emre, M., & Dubois, B. (2008). Parkinson's disease dementia: Definitions, guidelines, and research perspectives in diagnosis. Annals of Neurology,64(Suppl 2), S81–92.

    PubMed  Google Scholar 

  • Graham, D. L., Gray, A. J., Joyce, J. A., Yu, D., O'Moore, J., Carlson, G. A. et al. (2014). Increased O-GlcNAcylation reduces pathological tau without affecting its normal phosphorylation in a mouse model of tauopathy. Neuropharmacology,79, 307–313.

    Article  CAS  PubMed  Google Scholar 

  • Griffith, L. S., Mathes, M., & Schmitz, B. (1995). Beta-amyloid precursor protein is modified with O-linked N-acetylglucosamine. Journal of Neuroscience Research,41, 270–278.

    Article  CAS  PubMed  Google Scholar 

  • Griffith, L. S., & Schmitz, B. (1995). O-linked N-acetylglucosamine is upregulated in Alzheimer brains. Biochemical and Biophysical Research Communications,213, 424–431.

    Article  CAS  PubMed  Google Scholar 

  • Griffith, L. S., & Schmitz, B. (1999). O-linked N-acetylglucosamine levels in cerebellar neurons respond reciprocally to pertubations of phosphorylation. European Journal of Biochemistry,262, 824–831.

    Article  CAS  PubMed  Google Scholar 

  • Grima, J. C., Daigle, J. G., Arbez, N., Cunningham, K. C., Zhang, K., Ochaba, J. et al. (2017). Mutant huntingtin disrupts the nuclear pore complex. Neuron,94, 93–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu, J. H., Shi, J., & Dai, C. L. (2017). O-GlcNAcylation reduces ischemia–reperfusion-induced brain injury. Scientific Reports,7, 10686.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hackam, A. S., Singaraja, R., Wellington, C. L., Metzler, M., McCutcheon, K., Zhang, T. et al. (1998). The influence of huntingtin protein size on nuclear localization and cellular toxicity. Journal of Cell Biology,141, 1097–1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanover, J. A., Yu, S., Lubas, W. B., Shin, S. H., Ragano-Caracciola, M., Kochran, J., et al. (2003). Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene. Archives of Biochemistry and Biophysics,409, 287–297.

    Article  CAS  PubMed  Google Scholar 

  • Hardivillé, S., & Hart, G. W. (2014). Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell Metabolism,20, 208–213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hart, G. W., Slawson, C., Ramirez-Correa, G., & Lagerlof, O. (2011). Cross talk between O-GlcNAcylation and phosphorylation: Roles in signaling, transcription, and chronic disease. Annual Review of Biochemistry,80, 825–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hastings, N. B., Wang, X., Song, L., Butts, B. D., Grotz, D., Hargreaves, R. et al. (2017). Inhibition of O-GlcNAcase leads to elevation of O-GlcNAc tau and reduction of tauopathy and cerebrospinal fluid tau in rTg4510 mice. Molecular Neurodegeneration,12, 39–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He, Y., Ma, X., Li, D., & Hao, J. (2017). Thiamet G mediates neuroprotection in experimental stroke by modulating microglia/macrophage polarization and inhibiting NF-κB p65 signaling. Journal of Cerebral Blood Flow and Metabolism,37, 2938–2951.

    Article  CAS  PubMed  Google Scholar 

  • Hebert, L. E., Weuve, J., Scherr, P. A., & Evans, D. A. (2013). Alzheimer dsisease in the United States (2010–2050) estimated using the 2010 census. Neurology,80, 1778–1783.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hick, M., Herrmann, U., Weyer, S. W., Mallm, J. P., Tschape, J. A., Borgers, M. et al. (2015). Acute function of secreted amyloid precursor protein fragment APPsalpha in synaptic plasticity. Acta Neuropathologica,129, 21–37.

    Article  CAS  PubMed  Google Scholar 

  • Hinderlich, S., Berger, M., Schwarzkopf, M., Effertz, K., & Reutter, W. (2000). Molecular cloning and characterization of murine and human N-acetylglucosamine kinase. European Journal of Biochemistry,267, 3301–3308.

    Article  CAS  PubMed  Google Scholar 

  • Hippius, H., & Neundörfer, G. (2003). The discovery of Alzheimer's disease. Dialogues in Clinical Neuroscience,5, 101–108.

    PubMed  PubMed Central  Google Scholar 

  • Hirano, A., Nakano, I., Kurland, L. T., Mulder, D. W., Holley, P. W., & Saccomanno, G. (1984). Fine structural study of neurofibrillary changes in a family with amyotrophic lateral sclerosis. Journal of Neuropathology and Experimental Neurology,43, 471–480.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann, M., Boles, E., & Zimmermann, F. K. (1994). Characterization of the essential yeast gene encoding N-acetylglucosamine-phosphate mutase. European Journal of Biochemistry,221, 741–747.

    Article  CAS  PubMed  Google Scholar 

  • Horsch, M., Hoesch, L., Vasella, A., & Rast, D. M. (1991). N-acetylglucosaminono-1,5-lactone oxime and the corresponding (phenylcarbamoyl)oxime Novel and potent inhibitors of beta-N-acetylglucosaminidase. European Journal of Biochemistry,197, 815–818.

    Article  CAS  PubMed  Google Scholar 

  • Hresko, R. C., Heimberg, H., Chi, M. M., & Mueckler, M. (1998). Glucosamine-induced insulin resistance in 3T3-L1 adipocytes is caused by depletion of intracellular ATP. Journal of Biological Chemistry,273, 20658–20668.

    Article  CAS  PubMed  Google Scholar 

  • Hsu, D., & Marshall, G. A. (2017). Primary and secondary prevention trials in Alzheimer disease: Looking back, move forward. Current Alzheimer Research,14, 426–440.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Y., Ye, Y., & Fortini, M. E. (2002). Nicastrin is required for gamma-secretase cleavage of the Drosophila Notch receptor. Developmental Cell,2, 69–78.

    Article  CAS  PubMed  Google Scholar 

  • Hurlbert, M. S., Zhou, W., Wasmeier, C., Kaddis, F. G., Hutton, J. C., & Freed, C. R. (1999). Mice transgenic for an expanded CAG repeat in the Huntington's disease gene develop diabetes. Diabetes,48, 649–651.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, S. Y., Shin, J. H., Hwang, J. S., Kim, S. Y., Shin, J. A., Oh, E. S. et al. (2010). Glucosamine exerts a neuroprotective effect via suppression of inflammation in rat brain ischemia/reperfusion injury. Glia,58, 1881–1892.

    Article  PubMed  Google Scholar 

  • Ighodaro, O. M., Adeosun, A. M., & Akinloye, O. A. (2017). Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. Medicina,53, 365–374.

    Article  PubMed  Google Scholar 

  • Inzucchi, S. E., Viscoli, C. M., Young, L. H., Furie, K. L., Gorman, M., Lovejoy, A. M. et al. (2016). Pioglitazone prevents diabetes in patients with insulin resistance and cerebrovascular disease. Diabetes Care,39, 1684–1692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itkin, A., Salnikov, E. S., Aisenbrey, C., Raya, J., Glattard, E., Raussens, V. et al. (2017). Structural characterization of the amyloid precursor protein transmembrane domain and its γ-cleavage site. ACS Omega,2, 6525–6534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itkonen, H. M., Minner, S., Guldvik, I. J., Sandmann, M. J., Tsourlakis, M. C., Berge, V. et al. (2013). O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer cells. Cancer Research,73, 5277–5287.

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen, K. T., & Iverfeldt, K. (2011). O-GlcNAcylation increases non-amyloidogenic processing of the amyloid-beta precursor protein (APP). Biochemical and Biophysical Research Communications,404, 882–886.

    Article  CAS  PubMed  Google Scholar 

  • Jaffer, H., Morris, V. B., Stewart, D., & Labhasetwar, V. (2011). Advances in stroke therapy. Drug Delivery and Translational Research,1, 409–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahn, H. (2013). Memory loss in Alzheimer's disease. Dialogues in Clinical Neuroscience,15, 445–454.

    PubMed  PubMed Central  Google Scholar 

  • Jia, J., Wei, C., Chen, S., Li, F., Tang, Y., Qin, W. et al. (2018). The cost of Alzheimer's disease in China and re-estimation of costs worldwide. Alzheimer’s Dementia,14, 483–491.

    Article  PubMed  Google Scholar 

  • Jiang, J., Lazarus, M. B., Pasquina, L., Sliz, P., & Walker, S. (2011). A neutral diphosphate mimic crosslinks the active site of human O-GlcNAc transferase. Nature Chemical Biology,8, 72–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang, M., Yu, S., Yu, Z., Sheng, H., Li, Y., Liu, S. et al. (2017). XBP1 (X-box-binding protein-1)-dependent O-GlcNAcylation Is neuroprotective in ischemic stroke in young mice and its impairment in aged mice is rescued by thiamet-G. Stroke,48, 1646–1654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, V. E., Stewart, W., & Smith, D. H. (2010). Traumatic brain injury and amyloid-beta pathology: A link to Alzheimer's disease? Nature Reviews Neuroscience,11, 361–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joiner, C. M., Li, H., Jiang, J., & Walker, S. (2019). Structural characterization of the O-GlcNAc cycling enzymes: Insights into substrate recognition and catalytic mechanisms. Current Opinion in Structural Biology,56, 97–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Josefsen, K., Nielsen, M. D., Jorgensen, K. H., Bock, T., Norremolle, A., Sorensen, S. A. et al. (2008). Impaired glucose tolerance in the R6/1 transgenic mouse model of Huntington's disease. Journal of Neuroendocrinology,20, 165–172.

    Article  CAS  PubMed  Google Scholar 

  • Kadavath, H., Hofele, R. V., Biernat, J., Kumar, S., Tepper, K., Urlaub, H. et al. (2015). Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proceedings of the National Academy of Sciences of the USA,112, 7501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kametani, F., & Hasegawa, M. (2018). Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer's disease. Frontiers in Neuroscience,12, 25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang, J., Lemaire, H. G., Unterbeck, A., Salbaum, J. M., Masters, C. L., Grzeschik, K. H. et al. (1987). The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature,325, 733–736.

    Article  CAS  PubMed  Google Scholar 

  • Keembiyehetty, C. N., Krzeslak, A., Love, D. C., & Hanover, J. A. (2011). A lipid-droplet-targeted O-GlcNAcase isoform is a key regulator of the proteasome. Journal of Cell Science,124, 2851–2860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, C., Nam, D. W., Park, S. Y., Song, H., Hong, H. S., Boo, J. H. et al. (2013). O-linked beta-N-acetylglucosaminidase inhibitor attenuates beta-amyloid plaque and rescues memory impairment. Neurobiology of Aging,34, 275–285.

    Article  CAS  PubMed  Google Scholar 

  • Kim, E. J., Kang, D. O., Love, D. C., & Hanover, J. A. (2006). Enzymatic characterization of O-GlcNAcase isoforms using a fluorogenic GlcNAc substrate. Carbohydrate Research,341, 971–982.

    Article  CAS  PubMed  Google Scholar 

  • Knapp, S., Vocadlo, D., Gao, Z., Kirk, B., Lou, J., & Withers, S. G. (1996). NAG-thiazoline, an N-Acetyl-β-hexosaminidase inhibitor that implicates acetamido participation. Journal of the American Chemical Society,118, 6804–6805.

    Article  CAS  Google Scholar 

  • Kojro, E., & Fahrenholz, F. (2005). The non-amyloidogenic pathway: Structure and function of alpha-secretases. SubCellular Biochemistry,38, 105–127.

    Article  CAS  PubMed  Google Scholar 

  • Kopke, E., Tung, Y. C., Shaikh, S., Alonso, A. C., Iqbal, K., & Grundke-Iqbal, I. (1993). Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. Journal of Biological Chemistry,268, 24374–24384.

    CAS  PubMed  Google Scholar 

  • Kreppel, L. K., Blomberg, M. A., & Hart, G. W. (1997). Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. Journal of Biological Chemistry,272, 9308–9315.

    Article  CAS  PubMed  Google Scholar 

  • Kuemmerle, S., Gutekunst, C. A., Klein, A. M., Li, X. J., Li, S. H., Beal, M. F. et al. (1999). Huntington aggregates may not predict neuronal death in Huntington's disease. Annals of Neurology,46, 842–849.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., & Singh, A. (2015). A review on Alzheimer's disease pathophysiology and its management: An update. Pharmacological Reports,67, 195–203.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., Singh, P. K., Parihar, R., Dwivedi, V., Lakhotia, S. C., & Ganesh, S. (2014). Decreased O-linked GlcNAcylation protects from cytotoxicity mediated by huntingtin exon1 protein fragment. Journal of Biological Chemistry,289, 13543–13553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagerlof, O., Slocomb, J. E., Hong, I., Aponte, Y., Blackshaw, S., Hart, G. W., et al. (2016). The nutrient sensor OGT in PVN neurons regulates feeding. Science,351, 1293–1296.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laird, F. M., Cai, H., Savonenko, A. V., Farah, M. H., He, K., Melnikova, T. et al. (2005). BACE1, a major determinant of selective vulnerability of the brain to amyloid-β amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. Journal of Neuroscience,25, 11693.

    Article  CAS  PubMed  Google Scholar 

  • Lalic, N. M., Maric, J., Svetel, M., Jotic, A., Stefanova, E., Lalic, K. et al. (2008). Glucose homeostasis in Huntington disease: Abnormalities in insulin sensitivity and early-phase insulin secretion. Archives of Neurology,65, 476–480.

    Article  PubMed  Google Scholar 

  • Lauretti, E., Li, J. G., Di Meco, A., & Praticò, D. (2017). Glucose deficit triggers tau pathology and synaptic dysfunction in a tauopathy mouse model. Translational Psychiatry,7, e1020–e1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J. C., Kim, S. J., Hong, S., & Kim, Y. (2019). Diagnosis of Alzheimer’s disease utilizing amyloid and tau as fluid biomarkers. Experimental & Molecular Medicine,51, 53.

    Google Scholar 

  • Lee, T. N., Alborn, W. E., Knierman, M. D., & Konrad, R. J. (2006). Alloxan is an inhibitor of O-GlcNAc-selective N-acetyl-beta-D-glucosaminidase. Biochemical and Biophysical Research Communications,350, 1038–1043.

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre, T., Alonso, C., Mahboub, S., Dupire, M. J., Zanetta, J. P., Caillet-Boudin, M. L., et al. (1999). Effect of okadaic acid on O-linked N-acetylglucosamine levels in a neuroblastoma cell line. Biochimica et Biophysica Acta,1472, 71–81.

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre, T., Ferreira, S., Dupont-Wallois, L., Bussiere, T., Dupire, M. J., Delacourte, A. et al. (2003). Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of Tau proteins: A role in nuclear localization. Biochimica et Biophysica Acta,1619, 167–176.

    Article  CAS  PubMed  Google Scholar 

  • Levine, P. M., Galesic, A., Balana, A. T., Mahul-Mellier, A. L., Navarro, M. X., De Leon, C. A. et al. (2019). Alpha-synuclein O-GlcNAcylation alters aggregation and toxicity, revealing certain residues as potential inhibitors of Parkinson's disease. Proceedings of the National Academy of Sciences of the USA,116, 1511–1519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine, Z. G., Fan, C., Melicher, M. S., Orman, M., Benjamin, T., Walker, S. (2018). O-GlcNAc transferase recognizes protein substrates using an asparagine ladder in the tetratricopeptide repeat (TPR) superhelix. Journal of the American Chemical Society,140, 3510–3513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine, Z. G., & Walker, S. (2016). The Biochemistry of O-GlcNAc transferase: Which functions make it essential in mammalian cells? Annual Review of Biochemistry,85, 631–657.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, Y. E., Galesic, A., Levine, P. M., De Leon, C. A., Lamiri, N., Brennan, C. K., et al. (2017). O-GlcNAcylation of alpha-synuclein at serine 87 reduces aggregation without affecting membrane binding. ACS Chemical Biology,12, 1020–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, M. V., Chang, B., Imamura, M., Poungvarin, N., & Chan, L. (2006a). Glucose-dependent transcriptional regulation by an evolutionarily conserved glucose-sensing module. Diabetes,55, 1179–1189.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Lu, F., Wang, J. Z., & Gong, C. X. (2006b). Concurrent alterations of O-GlcNAcylation and phosphorylation of tau in mouse brains during fasting. European Journal of Neuroscience,23, 2078–2086.

    Article  PubMed  Google Scholar 

  • Li, X., Molina, H., Huang, H., Zhang, Y.-Y., Liu, M., Qian, S.-W. et al. (2009). O-linked N-acetylglucosamine modification on CCAAT enhancer-binding protein beta: Role during adipocyte differentiation. Journal of Biological Chemistry,284, 19248–19254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, W., Prakash, R., Chawla, D., Du, W., Didion, S. P., Filosa, J. A. et al. (2013). Early effects of high-fat diet on neurovascular function and focal ischemic brain injury. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology,304, R1001–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, W., Wang, T., & Xiao, S. (2016). Type 2 diabetes mellitus might be a risk factor for mild cognitive impairment progressing to Alzheimer's disease. Neuropsychiatric Disease and Treatment,12, 2489–2495.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lichtenberg, B., Mandelkow, E. M., Hagestedt, T., & Mandelkow, E. (1988). Structure and elasticity of microtubule-associated protein tau. Nature,334, 359–362.

    Article  CAS  PubMed  Google Scholar 

  • Lim, S., Haque, M. M., Nam, G., Ryoo, N., Rhim, H., & Kim, Y. K. (2015). Monitoring of intracellular tau aggregation regulated by OGA/OGT inhibitors. International Journal of Molecular Sciences,16, 20212–20224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim, G. P., Yang, F., Chu, T., Chen, P., Beech, W., Teter, B. et al. (2000). Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer's disease. Journal of Neuroscience,20, 5709–5714.

    Article  CAS  PubMed  Google Scholar 

  • Little, P. J., Drennon, K. D., & Tannock, L. R. (2008). Glucosamine inhibits the synthesis of glycosaminoglycan chains on vascular smooth muscle cell proteoglycans by depletion of ATP. Archives of Physiology and Biochemistry,114, 120–126.

    Article  CAS  PubMed  Google Scholar 

  • Liu, F., Iqbal, K., Grundke-Iqbal, I., Hart, G. W., & Gong, C. X. (2004a). O-GlcNAcylation regulates phosphorylation of tau: A mechanism involved in Alzheimer's disease. Proceedings of the National Academy of Sciences of the USA,101, 10804–10809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, F., Shi, J., Tanimukai, H., Gu, J., Gu, J., Grundke-Iqbal, I. et al. (2009). Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer's disease. Brain,132, 1820–1832.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, K., Paterson, A. J., Zhang, F., McAndrew, J., Fukuchi, K., Wyss, J. M. et al. (2004b). Accumulation of protein O-GlcNAc modification inhibits proteasomes in the brain and coincides with neuronal apoptosis in brain areas with high O-GlcNAc metabolism. Journal of Neurochemistry,89, 1044–1055.

    Article  CAS  PubMed  Google Scholar 

  • Liu, S., Sheng, H., Yu, Z., Paschen, W., & Yang, W. (2016). O-linked beta-N-acetylglucosamine modification of proteins is activated in post-ischemic brains of young but not aged mice: Implications for impaired functional recovery from ischemic stress. Journal of Cerebral Blood Flow and Metabolism,36, 393–398.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Cao, Y., Pan, X., Shi, M., Wu, Q., Huang, T. et al. (2018). O-GlcNAc elevation through activation of the hexosamine biosynthetic pathway enhances cancer cell chemoresistance. Cell Death & Disease,9, 485.

    Article  CAS  Google Scholar 

  • Liu, Y., Li, X., Yu, Y., Shi, J., Liang, Z., Run, X. et al. (2012). Developmental regulation of protein O-GlcNAcylation, O-GlcNAc transferase, and O-GlcNAcase in mammalian brain. PLoS ONE,7, e43724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Liu, F., Iqbal, K., Grundke-Iqbal, I., & Gong, C.-X. (2008). Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease. FEBS Letters,582, 359–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livingston, G., Sommerlad, A., Orgeta, V., Costafreda, S. G., Huntley, J., Ames, D. et al. (2017). Dementia prevention, intervention, and care. Lancet,390, 2673–2734.

    Article  PubMed  Google Scholar 

  • Loeffler, J. P., Picchiarelli, G., Dupuis, L., & De Aguilar, J. L. G. (2016). The role of skeletal muscle in amyotrophic lateral sclerosis. Brain Pathology,26, 227–236.

    Article  PubMed  PubMed Central  Google Scholar 

  • Loo, D. T., Copani, A., Pike, C. J., Whittemore, E. R., Walencewicz, A. J., & Cotman, C. W. (1993). Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proceedings of the National Academy of Sciences of the USA,90, 7951–7955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Love, D. C., Kochan, J., Cathey, R. L., Shin, S. H., & Hanover, J. A. (2003). Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase. Journal of Cell Science,116, 647–654.

    Article  CAS  PubMed  Google Scholar 

  • Lubas, W. A., Frank, D. W., Krause, M., & Hanover, J. A. (1997). O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. Journal of Biological Chemistry,272, 9316–9324.

    Article  CAS  PubMed  Google Scholar 

  • Lubas, W. A., & Hanover, J. A. (2000). Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity. Journal of Biological Chemistry,275, 10983–10988.

    Article  CAS  PubMed  Google Scholar 

  • Ludemann, N., Clement, A., Hans, V. H., Leschik, J., Behl, C., & Brandt, R. (2005). O-glycosylation of the tail domain of neurofilament protein M in human neurons and in spinal cord tissue of a rat model of amyotrophic lateral sclerosis (ALS). Journal of Biological Chemistry,280, 31648–31658.

    Article  PubMed  CAS  Google Scholar 

  • Macauley, M. S., He, Y., Gloster, T. M., Stubbs, K. A., Davies, G. J., & Vocadlo, D. J. (2010). Inhibition of O-GlcNAcase using a potent and cell-permeable inhibitor does not induce insulin resistance in 3T3-L1 adipocytes. Chemistry & Biology,17, 937–948.

    Article  CAS  Google Scholar 

  • Macauley, M. S., & Vocadlo, D. J. (2009). Enzymatic characterization and inhibition of the nuclear variant of human O-GlcNAcase. Carbohydrate Research,344, 1079–1084.

    Article  CAS  PubMed  Google Scholar 

  • Macauley, M. S., Whitworth, G. E., Debowski, A. W., Chin, D., & Vocadlo, D. J. (2005). O-GlcNAcase uses substrate-assisted catalysis: Kinetic analysis and development of highly selective mechanism-inspired inhibitors. Journal of Biological Chemistry,280, 25313–25322.

    Article  CAS  PubMed  Google Scholar 

  • Manning, R. W., Reid, C. M., Lampe, R. A., & Davis, L. G. (1988). Identification in rodents and other species of an mRNA homologous to the human β-amyloid precursor. Molecular Brain Research,3, 293–297.

    Article  CAS  Google Scholar 

  • Marcelli, S., Corbo, M., Iannuzzi, F., Negri, L., Blandini, F., Nistico, R., et al. (2018). The involvement of post-translational modifications in Alzheimer's disease. Current Alzheimer Research,15, 313–335.

    Article  CAS  PubMed  Google Scholar 

  • Marotta, N. P., Lin, Y. H., Lewis, Y. E., Ambroso, M. R., Zaro, B. W., Roth, M. T. et al. (2015). O-GlcNAc modification blocks the aggregation and toxicity of the protein alpha-synuclein associated with Parkinson's disease. Nature Chemistry,7, 913–920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall, S., Bacote, V., & Traxinger, R. R. (1991). Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. Journal of Biological Chemistry,266, 4706–4712.

    CAS  PubMed  Google Scholar 

  • Marshall, S., Nadeau, O., & Yamasaki, K. (2004). Dynamic actions of glucose and glucosamine on hexosamine biosynthesis in isolated adipocytes: Differential effects on glucosamine 6-phosphate, UDP-N-acetylglucosamine, and ATP levels. Journal of Biological Chemistry,279, 35313–35319.

    Article  CAS  PubMed  Google Scholar 

  • Martin, L., Latypova, X., & Terro, F. (2011). Post-translational modifications of tau protein: Implications for Alzheimer's disease. Neurochemistry International,58, 458–471.

    Article  CAS  PubMed  Google Scholar 

  • Martinez, M. R., Dias, T. B., Natov, P. S., & Zachara, N. E. (2017). Stress-induced O-GlcNAcylation: An adaptive process of injured cells. Biochemical Society Transactions,45, 237–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masters, C. L., Simms, G., Weinman, N. A., Multhaup, G., McDonald, B. L., & Beyreuther, K. (1985). Amyloid plaque core protein in Alzheimer disease and down syndrome. Proceedings of the National Academy of Sciences of the USA,82, 4245–4249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendez, M. F. (2017). Early-onset alzheimer disease. Neurologic Clinics,35, 263–281.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mercier, T., Bouvet, M., Dubois-Deruy, E., Dechaumes, A., Beseme, O., Richard, V. et al. (2018). Interplay between phosphorylation and O-GlcNAcylation of sarcomeric proteins in ischemic heart failure. Frontiers in Endocrinology,9, 598–598.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mergenthaler, P., Lindauer, U., Dienel, G. A., & Meisel, A. (2013). Sugar for the brain: The role of glucose in physiological and pathological brain function. Trend Neuroscience,36, 587–597.

    Article  CAS  Google Scholar 

  • Mio, T., Yabe, T., Arisawa, M., & Yamada-Okabe, H. (1998). The eukaryotic UDP-N-acetylglucosamine pyrophosphorylases. Gene cloning, protein expression, and catalytic mechanism. Journal of Biological Chemistry,273, 14392–14397.

    Article  CAS  PubMed  Google Scholar 

  • Mooradian, A. D., & Haas, M. J. (2011). Glucose-induced endoplasmic reticulum stress is independent of oxidative stress: A mechanistic explanation for the failure of antioxidant therapy in diabetes. Free Radical Biology and Medicine,50, 1140–1143.

    Article  CAS  PubMed  Google Scholar 

  • Moran, C., Beare, R., Phan, T. G., Bruce, D. G., Callisaya, M. L., & Srikanth, V., Alzheimer's Disease Neuroimaging. (2015). Type 2 diabetes mellitus and biomarkers of neurodegeneration. Neurology,85, 1123–1130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosconi, L. (2013). Glucose metabolism in normal aging and Alzheimer's disease: Methodological and physiological considerations for PET studies. Clinical and Translational Imaging. https://doi.org/10.1007/s40336-013-0026-y.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mosconi, L., Pupi, A., & De Leon, M. J. (2008). Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer's disease. Annals of the New York Academy of Sciences,1147, 180–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musuka, T. D., Wilton, S. B., Traboulsi, M., & Hill, M. D. (2015). Diagnosis and management of acute ischemic stroke: Speed is critical. CMAJ,187, 887–893.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagel, A. K., & Ball, L. E. (2014). O-GlcNAc transferase and O-GlcNAcase: Achieving target substrate specificity. Amino Acids,46, 2305–2316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neugroschl, J., & Wang, S. (2011). Alzheimer's disease: Diagnosis and treatment across the spectrum of disease severity. Mount Sinai Journal of Medicine,78, 596–612.

    Article  PubMed  Google Scholar 

  • Neve, R. L., Harris, P., Kosik, K. S., Kurnit, D. M., & Donlon, T. A. (1986). Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. Brain Research,387, 271–280.

    CAS  PubMed  Google Scholar 

  • Niikura, T., Tajima, H., & Kita, Y. (2006). Neuronal cell death in Alzheimer's disease and a neuroprotective factor, humanin. Current Neuropharmacology,4, 139–147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obeso, J. A., Rodriguez-Oroz, M. C., Goetz, C. G., Marin, C., Kordower, J. H., Rodriguez, M. et al. (2010). Missing pieces in the Parkinson's disease puzzle. Nature Medicine,16, 653–661.

    Article  CAS  PubMed  Google Scholar 

  • O'Donnell, N., Zachara, N. E., Hart, G. W., & Marth, J. D. (2004). Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Molecular and Cellular Biology,24, 1680–1690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuyama, R., & Marshall, S. (2003). UDP-N-acetylglucosaminyl transferase (OGT) in brain tissue: Temperature sensitivity and subcellular distribution of cytosolic and nuclear enzyme. Journal of Neurochemistry,86, 1271–1280.

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Meoz, R. F., Jiang, J., Lazarus, M. B., Orman, M., Janetzko, J., Fan, C. et al. (2015). A small molecule that inhibits OGT activity in cells. ACS Chemical Biology,10, 1392–1397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ott, A., Stolk, R. P., van Harskamp, F., Pols, H. A., Hofman, A., & Breteler, M. M. (1999). Diabetes mellitus and the risk of dementia: The Rotterdam study. Neurology,53, 1937–1942.

    Article  CAS  PubMed  Google Scholar 

  • Pagano, G., Polychronis, S., Wilson, H., Giordano, B., Ferrara, N., Niccolini, F., et al. (2018). Diabetes mellitus and Parkinson disease. Neurology,90, e1654–e1662.

    Article  PubMed  Google Scholar 

  • Pathak, S., Alonso, J., Schimpl, M., Rafie, K., Blair, D. E., Borodkin, V. S. et al. (2015). The active site of O-GlcNAc transferase imposes constraints on substrate sequence. Nature Structural & Molecular Biology,22, 744–750.

    Article  CAS  Google Scholar 

  • Peila, R., Rodriguez, B. L., & Launer, L. J. (2002). Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: The Honolulu-Asia aging study. Diabetes,51, 1256–1262.

    Article  CAS  PubMed  Google Scholar 

  • Piaceri, I., Nacmias, B., & Sorbi, S. (2013). Genetics of familial and sporadic Alzheimer's disease. Frontiers in Bioscience,5, 167–177.

    Article  Google Scholar 

  • Pinho, T. S., Correia, S. C., Perry, G., Ambrósio, A. F., & Moreira, P. I. (2019). Diminished O-GlcNAcylation in Alzheimer's disease is strongly correlated with mitochondrial anomalies. Biochimica et Biophysica Acta,1865, 2048–2059.

    Article  CAS  PubMed  Google Scholar 

  • Plassman, B. L., Langa, K. M., Fisher, G. G., Heeringa, S. G., Weir, D. R., Ofstedal, M. B. et al. (2007). Prevalence of dementia in the United States: The aging, demographics, and memory study. Neuroepidemiology,29, 125–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postina, R., Schroeder, A., Dewachter, I., Bohl, J., Schmitt, U., Kojro, E. et al. (2004). A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. Journal of Clinical Investigation,113, 1456–1464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabakaran, S., Lippens, G., Steen, H., & Gunawardena, J. (2012). Post-translational modification: Nature's escape from genetic imprisonment and the basis for dynamic information encoding. Wiley Interdisciplinary Reviews: Systems Biology and Medicine,4, 565–583.

    Article  CAS  PubMed  Google Scholar 

  • Quaranta, D., Vita, M. G., Bizzarro, A., Masullo, C., Piccininni, C., Gainotti, G., et al. (2015). Cognitive and behavioral determinants of psychotic symptoms in Alzheimer's disease. Dementia and Geriatric Cognitive Disorders,39, 194–206.

    Article  PubMed  Google Scholar 

  • Rajapakse, A. G., Ming, X. F., Carvas, J. M., & Yang, Z. (2009). The hexosamine biosynthesis inhibitor azaserine prevents endothelial inflammation and dysfunction under hyperglycemic condition through antioxidant effects. American Journal of Physiology-Heart and Circulatory Physiology,296, H815–822.

    Article  CAS  PubMed  Google Scholar 

  • Roth, C., Chan, S., Offen, W. A., Hemsworth, G. R., Willems, L. I., King, D. T. et al. (2017). Structural and functional insight into human O-GlcNAcase. Nature Chemical Biology,13, 610–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan, H.-B., Singh, J. P., Li, M.-D., Wu, J., & Yang, X. (2013). Cracking the O-GlcNAc code in metabolism. Trends in Endocrinology and Metabolism,24, 301–309.

    Article  CAS  PubMed  Google Scholar 

  • Ryczko, M. C., Pawling, J., Chen, R., Abdel Rahman, A. M., Yau, K., Copeland, J. K. et al. (2016). Metabolic reprogramming by hexosamine biosynthetic and Golgi N-glycan branching pathways. Scientific Reports,6, 23043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu, I.-H., Lee, K.-Y., & Do, S.-I. (2016). Aβ-affected pathogenic induction of S-nitrosylation of OGT and identification of Cys-NO linkage triplet. Biochimica et Biophysica Acta,1864, 609–621.

    Article  CAS  PubMed  Google Scholar 

  • Sadot, E., Heicklen-Klein, A., Barg, J., Lazarovici, P., & Ginzburg, I. (1996). Identification of a tau promoter region mediating tissue-specific-regulated expression in PC12 cells. Journal of Molecular Biology,256, 805–812.

    Article  CAS  PubMed  Google Scholar 

  • Santos, A. L., & Lindner, A. B. (2017). Protein posttranslational modifications: Roles in aging and age-related disease. Oxidative Medicine and Cellular Longevity,2017, 5716409–5716409.

    PubMed  PubMed Central  Google Scholar 

  • Schneider, L. S. (2010). The potential and limits for clinical trials for early Alzheimer's disease and some recommendations. The Journal of Nutrition, Health and Aging,14, 295–298.

    Article  CAS  PubMed  Google Scholar 

  • Schoonenboom, N. S., Pijnenburg, Y. A., Mulder, C., Rosso, S. M., Van Elk, E. J., Van Kamp, G. J. et al. (2004). Amyloid beta(1–42) and phosphorylated tau in CSF as markers for early-onset Alzheimer disease. Neurology,62, 1580–1584.

    Article  CAS  PubMed  Google Scholar 

  • Schroeder, J. M., Ansfield, F. J., Curreri, A. R., & Lepage, G. A. (1964). Toxicity and clinical trial of azaserine and 6-thioguanine in advanced solid malignant neoplasms. British Journal of Cancer,13, 449–458.

    Article  CAS  PubMed  Google Scholar 

  • Schuff, N., Woerner, N., Boreta, L., Kornfield, T., Shaw, L. M., Trojanowski, J. Q., Alzheimer's Disease Neuroimaging, et al. (2009). MRI of hippocampal volume loss in early Alzheimer's disease in relation to ApoE genotype and biomarkers. Brain,132, 1067–1077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekerdag, E., Solaroglu, I., & Gursoy-Ozdemir, Y. (2018). Cell death mechanisms in stroke and novel molecular and cellular treatment options. Current Neuropharmacology,16, 1396–1415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selnick, H. G., Hess, J. F., Tang, C., Liu, K., Schachter, J. B., Ballard, J. E. et al. (2019). Discovery of MK-8719, a potent O-GlcNAcase inhibitor as a potential treatment for tauopathies. Journal of Medicinal Chemistry,62, 10062–10097.

    Article  CAS  PubMed  Google Scholar 

  • Shafi, R., Iyer, S. P., Ellies, L. G., O'Donnell, N., Marek, K. W., Chui, D. et al. (2000). The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proceedings of the National Academy of Sciences of the USA,97, 5735–5739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan, X., Vocadlo, D. J., & Krieger, C. (2012). Reduced protein O-glycosylation in the nervous system of the mutant SOD1 transgenic mouse model of amyotrophic lateral sclerosis. Neuroscience Letters,516, 296–301.

    Article  CAS  PubMed  Google Scholar 

  • Shi, J., Gu, J. H., Dai, C. L., Gu, J., Jin, X., Sun, J. et al. (2015). O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling. Scientific Reports,5, 14500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skorobogatko, Y., Landicho, A., Chalkley, R. J., Kossenkov, A. V., Gallo, G., & Vosseller, K. (2014). O-linked beta-N-acetylglucosamine (O-GlcNAc) site thr-87 regulates synapsin I localization to synapses and size of the reserve pool of synaptic vesicles. Journal of Biological Chemistry,289, 3602–3612.

    Article  CAS  PubMed  Google Scholar 

  • Smet-Nocca, C., Broncel, M., Wieruszeski, J. M., Tokarski, C., Hanoulle, X., Leroy, A. et al. (2011). Identification of O-GlcNAc sites within peptides of the Tau protein and their impact on phosphorylation. Molecular BioSystems,7, 1420–1429.

    Article  CAS  PubMed  Google Scholar 

  • Soldner, J., Meindl, T., Koch, W., Bokde, A. L., Reiser, M. F., Moller, H. J. et al. (2012). Structural and functional neuronal connectivity in Alzheimer's disease: A combined DTI and fMRI study. Der Nervenarzt,83, 878–887.

    Article  CAS  PubMed  Google Scholar 

  • Squitieri, F., Cannella, M., & Simonelli, M. (2002). CAG mutation effect on rate of progression in Huntington's disease. Neurology Science,23(Suppl 2), S107–108.

    Article  Google Scholar 

  • Stachelek, C., Stachelek, J., Swan, J., Botstein, D., & Konigsberg, W. (1986). Identification, cloning and sequence determination of the genes specifying hexokinase A and B from yeast. Nucleic Acids Research,14, 945–963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanford, P. M., Halliday, G. M., Brooks, W. S., Kwok, J. B., Storey, C. E., Creasey, H. et al. (2000). Progressive supranuclear palsy pathology caused by a novel silent mutation in exon 10 of the tau gene: Expansion of the disease phenotype caused by tau gene mutations. Brain,123(Pt 5), 880–893.

    Article  PubMed  Google Scholar 

  • Steen, E., Terry, B. M., Rivera, E. J., Cannon, J. L., Neely, T. R., Tavares, R. et al. (2005). Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease: Is this type 3 diabetes? Journal of Alzheimer's Disease,7, 63–80.

    Article  CAS  PubMed  Google Scholar 

  • Stubbs, K. A., Macauley, M. S., & Vocadlo, D. J. (2009). A selective inhibitor Gal-PUGNAc of human lysosomal beta-hexosaminidases modulates levels of the ganglioside GM2 in neuroblastoma cells. Angewandte Chemie International Edition in English,48, 1300–1303.

    Article  CAS  Google Scholar 

  • Suh, H. N., Lee, Y. J., Kim, M. O., Ryu, J. M., & Han, H. J. (2014). Glucosamine-induced Sp1 O-GlcNAcylation ameliorates hypoxia-induced SGLT dysfunction in primary cultured renal proximal tubule cells. Journal of Cellular Physiology,229, 1557–1568.

    Article  CAS  PubMed  Google Scholar 

  • Surmeier, D. J., Guzman, J. N., Sanchez-Padilla, J., & Goldberg, J. A. (2010). What causes the death of dopaminergic neurons in Parkinson's disease? Progress in Brain Research,183, 59–77.

    Article  CAS  PubMed  Google Scholar 

  • Swamy, M., Pathak, S., Grzes, K. M., Damerow, S., Sinclair, L. V., van Aalten, D. M. F., et al. (2016). Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nature Immunology,17, 712–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talbot, K., Wang, H. Y., Kazi, H., Han, L. Y., Bakshi, K. P., Stucky, A. et al. (2012). Demonstrated brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. Journal of Clinical Investigation,122, 1316–1338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, M. S., Tan, L., Jiang, T., Zhu, X. C., Wang, H. F., Jia, C. D., et al. (2014). Amyloid-beta induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer's disease. Cell Death Disease,5, e1382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Telenius, H., Kremer, B., Goldberg, Y. P., Theilmann, J., Andrew, S. E., Zeisler, J., et al. (1994). Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm. Nature Genetics,6, 409–414.

    Article  CAS  PubMed  Google Scholar 

  • Terracciano, A., Sutin, A. R., An, Y., O'Brien, R. J., Ferrucci, L., Zonderman, A. B., et al. (2014). Personality and risk of Alzheimer's disease: New data and meta-analysis. Alzheimers Dementia,10, 179–186.

    Article  Google Scholar 

  • Thompson, J. W., Griffin, M. E., & Hsieh-Wilson, L. C. (2018). Methods for the detection, study, and dynamic profiling of O-GlcNAc glycosylation. Methods in Enzymology,598, 101–135.

    Article  CAS  PubMed  Google Scholar 

  • Tian, J., Geng, Q., Ding, Y., Liao, J., Dong, M.-Q., Xu, X., et al. (2016). O-GlcNAcylation antagonizes phosphorylation of CDH1 (CDC20 homologue 1). Journal of Biological Chemistry,291, 12136–12144.

    Article  CAS  PubMed  Google Scholar 

  • Torres, C. R., & Hart, G. W. (1984). Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. Journal of Biological Chemistry,259, 3308–3317.

    CAS  PubMed  Google Scholar 

  • Tramutola, A., Sharma, N., Barone, E., Lanzillotta, C., Castellani, A., Iavarone, F. et al. (2018). Proteomic identification of altered protein O-GlcNAcylation in a triple transgenic mouse model of Alzheimer's disease. Biochimica et Biophysica Acta,1864, 3309–3321.

    Article  CAS  PubMed  Google Scholar 

  • Tweedie-Cullen, R. Y., Reck, J. M., & Mansuy, I. M. (2009). Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain. Journal of Proteome Research,8, 4966–4982.

    Article  CAS  PubMed  Google Scholar 

  • Uemura, E., & Greenlee, H. W. (2006). Insulin regulates neuronal glucose uptake by promoting translocation of glucose transporter GLUT3. Experimental Neurology,198, 48–53.

    Article  CAS  PubMed  Google Scholar 

  • Vocadlo, D. J. (2012). O-GlcNAc processing enzymes: Catalytic mechanisms, substrate specificity, and enzyme regulation. Current Opinion in Chemical Biology,16, 488–497.

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi, K., Tanji, K., Mori, F., & Takahashi, H. (2007). The Lewy body in Parkinson's disease: Molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology,27, 494–506.

    Article  PubMed  Google Scholar 

  • Walgren, J. L., Vincent, T. S., Schey, K. L., & Buse, M. G. (2003). High glucose and insulin promote O-GlcNAc modification of proteins, including alpha-tubulin. American Journal of Physiology, Endocrinology and Metabolism,284, E424–434.

    Article  CAS  PubMed  Google Scholar 

  • Walker, B., Brown, M. F., Lynas, J. F., Martin, S.L., McDowell, A., Badet, B., Hill, A. J. (2001). Inhibition of Escherichia coli glucosamine synthetase by novel electrophilic analogues of glutamine comparison with 6-diazo-5-oxo-norleucine. Bioorganic & Medicinal Chemistry Letters,10(2000), 2795–2798.

    Google Scholar 

  • Walling, A. D. (1999). Amyotrophic lateral sclerosis: Lou Gehrig's disease. American Family Physician,59, 1489–1496.

    CAS  PubMed  Google Scholar 

  • Wang, A. C., Jensen, E. H., Rexach, J. E., Vinters, H. V., & Hsieh-Wilson, L. C. (2016). Loss of O-GlcNAc glycosylation in forebrain excitatory neurons induces neurodegeneration. Proceedings of the National Academy of Sciences of the USA,113, 15120–15125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Gu, B. J., Masters, C. L., & Wang, Y. J. (2017a). A systemic view of Alzheimer disease: Insights from amyloid-beta metabolism beyond the brain. Nature Reviews Neurology,13, 612–623.

    Article  CAS  PubMed  Google Scholar 

  • Wang, P., Lazarus, B. D., Forsythe, M. E., Love, D. C., Krause, M. W., & Hanover, J. A. (2012). O-GlcNAc cycling mutants modulate proteotoxicity in Caenorhabditis elegans models of human neurodegenerative diseases. Proceedings of the National Academy of Sciences of the USA,109, 17669–17674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, S., Yang, F., Petyuk, V. A., Shukla, A. K., Monroe, M. E., Gritsenko, M. A. et al. (2017b). Quantitative proteomics identifies altered O-GlcNAcylation of structural, synaptic and memory-associated proteins in Alzheimer's disease. The Journal of Pathology,243, 78–88.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z., Gucek, M., & Hart, G. W. (2008). Cross-talk between GlcNAcylation and phosphorylation: Site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. Proceedings of the National Academy of Sciences of the USA,105, 13793–13798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wani, W. Y., Chatham, J. C., Darley-Usmar, V., McMahon, L. L., & Zhang, J. (2017). O-GlcNAcylation and neurodegeneration. Brain Research Bulletin,133, 80–87.

    Article  CAS  PubMed  Google Scholar 

  • Weingarten, M. D., Lockwood, A. H., Hwo, S. Y., & Kirschner, M. W. (1975). A protein factor essential for microtubule assembly. Proceedings of the National Academy of Sciences of the USA,72, 1858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weller, J., & Budson, A. (2018). Current understanding of Alzheimer's disease diagnosis and treatment. F1000 Research,7, F1000.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wells, L., Vosseller, K., & Hart, G. W. (2001). Glycosylation of nucleocytoplasmic proteins: Signal transduction and O-GlcNAc. Science,291, 2376–2378.

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski, K. E., Wisniewski, H. M., & Wen, G. Y. (1985). Occurrence of neuropathological changes and dementia of Alzheimer's disease in Down's syndrome. Annals of Neurology,17, 278–282.

    Article  CAS  PubMed  Google Scholar 

  • Woo, H. N., Baik, S. H., Park, J. S., Gwon, A. R., Yang, S., Yun, Y. K., et al. (2011). Secretases as therapeutic targets for Alzheimer's disease. Biochemical and Biophysical Research Communications,404, 10–15.

    Article  CAS  PubMed  Google Scholar 

  • Woo, H. N., Park, J. S., Gwon, A. R., Arumugam, T. V., & Jo, D. G. (2009). Alzheimer's disease and Notch signaling. Biochemical and Biophysical Research Communications,390, 1093–1097.

    Article  CAS  PubMed  Google Scholar 

  • Wu, F., Lukinius, A., Bergstrom, M., Eriksson, B., Watanabe, Y., & Langstrom, B. (1999). A mechanism behind the antitumour effect of 6-diazo-5-oxo-l-norleucine (DON): Disruption of mitochondria. European Journal of Cancer,35, 1155–1161.

    Article  CAS  PubMed  Google Scholar 

  • Xu, J., Murphy, S.L., Kochanek, K.D., Bastian, B., Arias, E. (2018). Deaths: Final data for 2016. National Vital Statistics Reports,67, 1–76.

    PubMed  Google Scholar 

  • Xu, H., Gu, H., Yang, Y., Cai, E., Ding, F., & Yu, S. (2019). 2-(4-Methoxyphenyl)ethyl-2-acetamido-2-deoxy-beta-d-pyranoside exerts a neuroprotective effect through regulation of energy homeostasis and O-GlcNAcylation. Journal of Molecular Neuroscience,69, 177–187.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Q., Park, Y., Huang, X., Hollenbeck, A., Blair, A., Schatzkin, A., et al. (2011). Diabetes and risk of Parkinson's disease. Diabetes Care,34, 910–915.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, S. L., Chalkley, R. J., Maynard, J. C., Wang, W., Ni, W., Jiang, X. et al. (2017). Proteomic analysis reveals O-GlcNAc modification on proteins with key regulatory functions in Arabidopsis. Proceedings of the National Academy of Sciences of the USA,114, e1536–e1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, W. H., Kim, J. E., Nam, H. W., Ju, J. W., Kim, H. S., Kim, Y. S., et al. (2006). Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nature Cell Biology,8, 1074–1083.

    Article  CAS  PubMed  Google Scholar 

  • Yang, X., & Qian, K. (2017). Protein O-GlcNAcylation: Emerging mechanisms and functions. Nature Reviews Molecular Cell Biology,18, 452–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, X., Zhang, F., & Kudlow, J. E. (2002). Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: Coupling protein O-GlcNAcylation to transcriptional repression. Cell,110, 69–80.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y. R., & Suh, P. G. (2014). O-GlcNAcylation in cellular functions and human diseases. Advances in Biological Regulation,54, 68–73.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y. W., Hsieh, T. F., Li, C. I., Liu, C. S., Lin, W. Y., Chiang, J. H. et al. (2017). Increased risk of Parkinson disease with diabetes mellitus in a population-based study. Medicine,96, e5921.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao, P. J., & Coleman, P. D. (1998). Reduction of O-linked N-acetylglucosamine-modified assembly protein-3 in Alzheimer's disease. Journal of Neuroscience,18, 2399–2411.

    Article  CAS  PubMed  Google Scholar 

  • Yki-Jarvinen, H., Vogt, C., Iozzo, P., Pipek, R., Daniels, M. C., Virkamaki, A. et al. (1997). UDP-N-acetylglucosamine transferase and glutamine: Fructose 6-phosphate amidotransferase activities in insulin-sensitive tissues. Diabetologia,40, 76–81.

    Article  CAS  PubMed  Google Scholar 

  • Yuzwa, S. A., Macauley, M. S., Heinonen, J. E., Shan, X., Dennis, R. J., He, Y. et al. (2008). A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nature Chemical Biology,4, 483–490.

    Article  CAS  PubMed  Google Scholar 

  • Yuzwa, S. A., Shan, X., Jones, B. A., Zhao, G., Woodward, M. L., Li, X. et al. (2014). Pharmacological inhibition of O-GlcNAcase (OGA) prevents cognitive decline and amyloid plaque formation in bigenic tau/APP mutant mice. Molecular Neurodegeneration,9, 42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuzwa, S. A., Shan, X., Macauley, M. S., Clark, T., Skorobogatko, Y., Vosseller, K., et al. (2012). Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nature Chemical Biology,8, 393–399.

    Article  CAS  PubMed  Google Scholar 

  • Yuzwa, S. A., & Vocadlo, D. J. (2014). O-GlcNAc and neurodegeneration: Biochemical mechanisms and potential roles in Alzheimer's disease and beyond. Chemical Society Reviews,43, 6839–6858.

    Article  CAS  PubMed  Google Scholar 

  • Yuzwa, S. A., Yadav, A. K., Skorobogatko, Y., Clark, T., Vosseller, K., & Vocadlo, D. J. (2011). Mapping O-GlcNAc modification sites on tau and generation of a site-specific O-GlcNAc tau antibody. Amino Acids,40, 857–868.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Gao, G., & Brunk, U. T. (1992). Extracellular reduction of alloxan results in oxygen radical-mediated attack on plasma and lysosomal membranes. Apmis.,100, 317–325.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Lei, H., Chen, Y., Ma, Y. T., Jiang, F., Tan, J. et al. (2017). Enzymatic O-GlcNAcylation of alpha-synuclein reduces aggregation and increases SDS-resistant soluble oligomers. Neuroscience Letters,655, 90–94.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., Li, Y., Xu, H., & Zhang, Y.-W. (2014). The γ-secretase complex: From structure to function. Frontiers in Cellular Neuroscience,8, 427.

    PubMed  PubMed Central  Google Scholar 

  • Zheng, H., & Koo, E. H. (2006). The amyloid precursor protein: Beyond amyloid. Molecular Neurodegeneration,1, 5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Grants (2019R1A2C3011422, 2017M3C7A1048268, 2018M3C7A1021851) funded by the Basic Science Research Program through the National Research Foundation of Korea (NRF), the Ministry of Education, Science and Technology, Republic of Korea. The work was also supported by a grant to Korea Polar Research Institute (KOPRI) under project (PE20010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thiruma V. Arumugam or Dong-Gyu Jo.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests or any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Lai, M.K.P., Arumugam, T.V. et al. O-GlcNAcylation as a Therapeutic Target for Alzheimer’s Disease. Neuromol Med 22, 171–193 (2020). https://doi.org/10.1007/s12017-019-08584-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-019-08584-0

Keywords

Navigation