Skip to main content
Log in

Genericity of contracting elements in groups

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We establish that, for statistically convex-cocompact actions, contracting elements are exponentially generic in counting measure. We obtain as corollaries results on the exponential genericity for the set of hyperbolic elements in relatively hyperbolic groups, the set of rank-1 elements in CAT(0) groups, and the set of pseudo-Anosov elements in mapping class groups. For a proper action with purely exponential growth, we show that the set of contracting elements is generic. In particular, for mapping class groups, the set of pseudo-Anosov elements is generic in a sufficiently large subgroup, provided that the subgroup has purely exponential growth. By Roblin’s work, we obtain that the set of hyperbolic elements is generic in any discrete group action on CAT(\(-1\)) space with finite BMS measure. We present applications to the number of conjugacy classes of non-rank-1 elements in CAT(0) groups with rank-1 elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arzhantseva, G., Cashen, C., Tao, J.: Growth tight actions. Pac. J. Math. 278, 1–49 (2015)

    Article  MathSciNet  Google Scholar 

  2. Arzhantseva, N., Cashen, C., Gruber, D., Hume, D.: Contracting geodesics in infinitely presented graphical small cancellation groups. arXiv:1602.03767

  3. Ballmann, W.: Lectures on spaces of nonpositive curvature, Birka\(\ddot{u}\)ser, Basel, (1995)

  4. Behrstock, J., Charney, R.: Divergence and quasimorphisms of right-angled Artin groups. Math. Ann. 352, 339–356 (2012)

    Article  MathSciNet  Google Scholar 

  5. Behrstock, J., Hagen, M., Sisto, A.: Thickness, relative hyperbolicity, and randomness in Coxeter groups. Algebraic Geom. Topol. 21, 1731–1804 (2017)

    Article  MathSciNet  Google Scholar 

  6. Bestvina, M., Bromberg, K., Fujiwara, K.: Constructing group actions on quasi-trees and applications to mapping class groups. Publ. Math. de l’IHÉS 122(1), 1–64 (2015). arXiv:1006.1939

    Article  MathSciNet  Google Scholar 

  7. Bestvina, M., Fujiwara, K.: A characterization of higher rank symmetric spaces via bounded cohomology. Geom. Funct. Anal. 19(1), 11–40 (2009). arXiv:math/0702274

    Article  MathSciNet  Google Scholar 

  8. Bowditch, B.: Relatively hyperbolic groups. Int. J. Algebra Comput. 22(3), 1250016 (2012)

  9. Bridson, M., Haefliger, A.: Metric Spaces of Non-positive Curvature, Grundlehren der Mathematischen Wissenschaften, vol. 319. Springer, Berlin (1999)

  10. Caruso, S., Wiest, B.: On the genericity of pseudo-Anosov braids II: Conjugations to rigid braids. Groups Geom. Dyn. 11(2), 549–565 (2017). arXiv:1309.6137

    Article  MathSciNet  Google Scholar 

  11. Charney, R., Sultan, H.: Contracting boundaries of CAT(0) spaces. J Topol. 8(1), 93–117 (2015)

    Article  MathSciNet  Google Scholar 

  12. Cumplido, M.: On the loxodromic actions of Artin-Tits groups. arXiv:1706.08377

  13. Cumplido, M., Wiest, B.: A positive proportion of elements of mapping class groups is pseudo-Anosov. Bull. LMS. arXiv:1703.05044 (to appear in)

  14. Dahmani, F.: Combination of convergence groups. Geom. Topol. 7, 933–963 (2003)

    Article  MathSciNet  Google Scholar 

  15. Dahmani, F., Guirardel, V., Osin, D.: Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces. Memoirs AMS (2011). arXiv:1111.7048 (to appear in)

  16. Dal’bo, F., Otal, P., Peigné, M.: Séries de Poincaré des groupes géométriquement finis. Isr. J. Math. 118(3), 109–124 (2000)

    Article  Google Scholar 

  17. Drutu, C., Sapir, M.: Tree-graded spaces and asymptotic cones of groups. Topology 44(5), 959–1058 (2005) (with an appendix by D. Osin and M. Sapir)

  18. Eskin, A., Mirzakhani, M., Rafi, K.: Counting geodesics in a stratum. Invent. Math. (2012). arxiv:1206.5574 (to appear)

  19. Farb, B.: Relatively hyperbolic groups. Geom. Funct. Anal. 8(5), 810–840 (1998)

    Article  MathSciNet  Google Scholar 

  20. Farb, B.: Some problems on mapping class groups and moduli space, Proc. Symp. Pure and Applied Math., ch. Problems on Mapping Class Groups and Related Topics. American Mathematical Society, Providence, RI (2006)

  21. Farb, B., Margalit, D.: A Primer on Mapping Class Groups, Princeton Mathematical Series, vol. 49. Princeton University Press, Princeton (2012)

  22. Farb, B., Mosher, L.: Convex cocompact subgroups of mapping class groups. Geom. Topol. 6, 91–152 (2002)

    Article  MathSciNet  Google Scholar 

  23. Fathi, A., Laudenbach, F., Poénaru, V.: Travaux de thurston sur les surfaces., vol. 66–67. Astérisque, Soc. Math., Paris (1979)

  24. Floyd, W.: Group completions and limit sets of Kleinian groups. Invent. Math. 57, 205–218 (1980)

    Article  MathSciNet  Google Scholar 

  25. Gekhtman, I., Taylor, S., Tiozzo, G.: Counting loxodromics for hyperbolic actions (2016). arXiv:1605.02103

  26. Gerasimov, V.: Expansive convergence groups are relatively hyperbolic. Geom. Funct. Anal. 19, 137–169 (2009)

    Article  MathSciNet  Google Scholar 

  27. Gerasimov, V., Potyagailo, L.: Quasi-isometries and Floyd boundaries of relatively hyperbolic groups. J. Eur. Math. Soc. 15, 2115–2137 (2013)

    Article  Google Scholar 

  28. Gerasimov, V., Potyagailo, L.: Quasiconvexity in the relatively hyperbolic groups. J. für die reine und angewandte Math. (Crelle J.) (2015). arXiv:1103.1211

  29. Ghys, E., de la Harpe, P.: Sur les groupes hyperboliques d’après Mikhael Gromov. Progress in Math. Birkaüser, Basel (1990)

  30. Gouëzel, S., Mathéus, F., Maucourant, F.: Entropy and drift in word hyperbolic groups. Invent. Math. 211(3), 1201–1255 (2018). arXiv:1501.05082

    Article  MathSciNet  Google Scholar 

  31. Gromov, M.: Hyperbolic groups, essays in group theory. In: Gersten, S. (ed.), vol. 1, pp. 75–263. Springer, New York (1987)

  32. Gromov, M.: Random walk in random groups. GAFA 13(1), 73–146 (2003)

    MathSciNet  MATH  Google Scholar 

  33. Guivarc’h, Y.: Sur la loi des grands nombres et le rayon spectral d’une marche aléatoire, Astérisque (1979) (French) Conference on Random Walks (Kleebach, ed.), vol. 74, pp. 47–98. Soc. Math., France (1980)

  34. Karlsson, A.: Free subgroups of groups with non-trivial Floyd boundary. Commun. Algebra. 31, 5361–5376 (2003)

    Article  Google Scholar 

  35. Knieper, G.: The uniqueness of the measure of maximal entropy for geodesic flows on rank 1 manifolds. Ann. Math. 148(1), 291–314 (1998)

    Article  MathSciNet  Google Scholar 

  36. Maher, J.: Asymptotics for pseudo-Anosov elements in Teichmüller lattices. Geom. Funct. Anal. 20, 527–544 (2010)

    Article  MathSciNet  Google Scholar 

  37. Maher, J.: Random walks on the mapping class group. Duke Math. J. 156(3), 429–468 (2011)

    Article  MathSciNet  Google Scholar 

  38. McCarthy, J., Papadopoulos, A.: Dynamics on Thurston’s sphere of projective measured foliations. Comment. Math. Helvetici 66, 133–166 (1989)

    Article  MathSciNet  Google Scholar 

  39. Minsky, Y.: Quasi-projections in Teichmüller space. J. Reine Angew. Math. 473, 121–136 (1996)

    MathSciNet  MATH  Google Scholar 

  40. Osin, D.: Relatively Hyperbolic Groups: Intrinsic Geometry, Algebraic Properties, and Algorithmic Problems, vol. 179. Mem. Amer. Math. Soc. (2006)

  41. Rivin, I.: Walks on groups, counting reducible matrices, polynomials, and surface and free group automorphisms. Duke Math. J. 142(2), 353–379 (2008)

    Article  MathSciNet  Google Scholar 

  42. Roblin, T.: Ergodicité et équidistribution en courbure négative, no. 95. Mémoires de la SMF (2003)

  43. Sisto, A.: Contracting elements and random walks. Crelle’s J. 2018(742), 79–114 (2011)

    Article  MathSciNet  Google Scholar 

  44. Vershik, A.: Dynamic theory of growth in groups: entropy, boundaries, examples. Uspekhi Mat. Nauk 55(4), 59–128 (2000)

  45. Wiest, B.: On the genericity of loxodromic actions. Isr. J. Math. 220(2), 559–582 (2017). arXiv:1406.7041v4

    Article  MathSciNet  Google Scholar 

  46. Yang, W.: Statistically convex-cocompact actions of groups with contracting elements. IMRN. arXiv:1612.03648 (to appear in)

  47. Yang, W.: Patterson–Sullivan measures and growth of relatively hyperbolic groups (2013). arXiv:1308.6326 (Preprint)

  48. Yang, W.: Growth tightness for groups with contracting elements. Math. Proc. Camb. Philos. Soc. 157, 297–319 (2014)

    Article  MathSciNet  Google Scholar 

  49. Yang, W.: Purely exponential growth of cusp-uniform actions. Ergod. Theory Dyn. Syst. (2016). arXiv:1602.07897 (preprint; to appear in)

Download references

Acknowledgements

The author is grateful to Brian Bowditch and Jason Behrstock for helpful conversations. The author is indebted to I. Gehktman and S. Taylor for telling him of Maher’s result at MSRI in August 2016 when this manuscript was in its final stage of preparation. Thanks go to the anonymous referee for her/his comments which lead to several improvements of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-yuan Yang.

Additional information

Communicated by Ngaiming Mok.

The author is supported by the National Natural Science Foundation of China (No. 11771022).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Wy. Genericity of contracting elements in groups. Math. Ann. 376, 823–861 (2020). https://doi.org/10.1007/s00208-018-1758-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-018-1758-9

Mathematics Subject Classification

Navigation