Skip to main content
Log in

A new probability model with application to heavy-tailed hydrological data

  • Published:
Environmental and Ecological Statistics Aims and scope Submit manuscript

Abstract

Because of the dramatic changes that are being observed in the climatic conditions of the world, such as excess of rains, drought and huge floods, we introduce a versatile hydrologic probability model with three parameters. The proposed model is a combination of the Lomax and generalized Weibull distributions based on an exponent odd function. Main properties of the distribution are obtained, such as shapes of the probability density and hazard rate functions, quantile function, asymptotic distribution, information matrix and characterization via hazard rate function. Parameters are estimated via the maximum likelihood estimation method. Four data sets are used to compare the proposed model with a number of well-known hydrologic models. The proposed model is found to be suitable and representative for heavy-tailed hydrological data sets, with least loss of information attitude and a realistic return period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad MI, Sinclair CD, Werritty A (1988) Log-logistic flood frequency analysis. J Hydrol 98:205–224

    Article  Google Scholar 

  • Akinsete A, Famoye F, Lee C (2008) The beta-Pareto distribution. Statistics 42:547–563

    Article  Google Scholar 

  • Alves MIG, Haan LD, Neves C (2009) Statistical inference for heavy and super-heavy tailed distributions. J Stat Plan Inf 139:213–227

    Article  Google Scholar 

  • Balakrishnan N, Leung MY (1988) Means, variances and covariances of order statistics, BLUEs for the Type-I generalized logistic distribution, and some applications. Communications in Statistics Simulation and Computation 17(1):51–84

    Article  Google Scholar 

  • Bobee B (1975) The log Pearson type 3 distribution and its application in hydrology. Water Resour Res 11(5):681–689

    Article  Google Scholar 

  • Cakmakyapan S, Ozel G (2016) The Lindley family of distributions: properties and applications. Hacet J Math Stat 46:1–27

    Article  Google Scholar 

  • Dargahi-Noubary GR (1989) On tail estimation: an improved method. Math Geol 21(8):829–842

    Article  Google Scholar 

  • Denuit M, Maréchal X, Pitrebois S, Walhin JF (2007) Actuarial modelling of claim counts risk classification, credibility and bonus-malus systems. Wiley, West Sussex

    Book  Google Scholar 

  • Dyrrdal AV (2012) Estimation of extreme precipitation in Norway and a summary of the state of the art. Report no. 08/2012, Climate, Norwegian Meteorological Institute

  • Foss S, Zachary S, Korshunov D (2011) An introduction to heavy-tailed and sub-exponential distributions. Springer, New York

    Book  Google Scholar 

  • Hosking JRM, Wallis JR (1987) Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29(3):339–349

    Article  Google Scholar 

  • Hussain T, Bakouch HS, Iqbal Z (2018) A new probability model for hydrologic events: properties and applications. J Agric Biol Environ Stat 23(1):63–82

    Article  Google Scholar 

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. Field CB et al (eds) Cambridge University Press

  • Johnson NL, Kotz S, Balakrishnan N (2005) Continuous univariate distributions, vol 1, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Junior PWM, Johnson ES (1973) Three parameter kappa distribution maximum likelihood estimates and likelihood ratio tests. Mon Weather Rev 101(09):701–711

    Article  Google Scholar 

  • Krige D (1960) On the departure of ore value distributions from the log-normal model in South African gold mines. J South Afr Inst Min Metall 40(1):231–244

    Google Scholar 

  • Leadbetter MR, Lindgren G, Rootzen H (1987) Extremes and related properties of random sequences and processes. Springer, NewYork

    Google Scholar 

  • Loikith PC, Neelin JD (2015) Short-tailed temperature distributions over North America and implications for future changes in extremes. Geophys Res Lett 42:8577–8585

    Article  Google Scholar 

  • Lomax KS (1987) Business failures: another example of the analysis of failure data. J Am Stat Assoc 49:847–852

    Article  Google Scholar 

  • Markovich N (2007) Nonparametric analysis of univariate heavy-tailed data. Wiley, Chichester

    Book  Google Scholar 

  • Mudholkar GS, Srivastava DK, Kollia GD (1996) A generalization of the Weibull distribution with application to the analysis of survival data. J Am Stat Assoc 91(436):1575–1583

    Article  Google Scholar 

  • Mujere N (2011) Flood frequency analysis using the Gumbel distribution. Int J Comput Sci Eng 3(7):2774–2778

    Google Scholar 

  • Papalexiou SM, Koutsoyiannis D, Makropoulos C (2013) How extreme is extreme? An assessment of daily rainfall distribution tails. Hydrol Earth Syst Sci 17:851–862

    Article  Google Scholar 

  • Pickands J (1975) Statistical inference using extreme order statistics. Ann Stat 3:119–131

    Article  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/

  • Ramos PL, Louzada F, Ramos E, Dey S (2018) The Fréchet distribution: estimation and application an overview. Available at: arXiv:1801.05327v1 [stat.AP]

  • Rao AR, Hameed KH (2000) Flood frequency analysis: new directions in civil engineering. CRC Press, Florid

    Google Scholar 

  • Vuong QH (1989) Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica 57(2):307–333

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tassaddaq Hussain.

Additional information

Handling Editor: Pierre Dutilleul.

Appendices

Appendix-A

Proof

Necessity:

If \(X\sim LDGW(\lambda ,\theta ,\beta )\), with a cdf defined by Equation (1), then its hrf can be expressed as

$$\begin{aligned} h(x)=h_{{LDGW}}(x|\lambda , \theta , \beta )=\frac{e^{-\theta +\theta \left( 1-\lambda x^{\theta } \right) ^{-\frac{1}{\lambda }}} x^{-1+\theta } \beta \theta ^2 \left( 1-x^{\theta } \lambda \right) ^{-1-\frac{1}{\lambda }}}{ \left( e^{\theta }-1\right) \left( 1+\frac{e^{-\theta +\theta \left( 1-\lambda x^{\theta } \right) ^{-\frac{1}{\lambda }}}-1}{e^{\theta }-1}\right) }, \end{aligned}$$

where \(x>0\), \(\lambda \le 0\), \(\alpha >0\) and \(\beta >0\).

Now, differentiating the logarithmic form of the hrf with respect to x, we get

$$\begin{aligned}&\frac{d \ln h(x)}{dx} =\frac{\theta -1}{x}+\theta ^{2}x^{\theta -1}\left( 1-\lambda x^{\theta }\right) ^{-\frac{1}{\lambda }-1} +\left( \frac{1}{\lambda }+1\right) \frac{\lambda \theta x^{\theta -1}}{1-\lambda x^{\theta }}\\&\qquad -\frac{e^{-\theta +\theta \left( 1-\lambda x^{\theta } \right) ^{-\frac{1}{\lambda }}} x^{-1+\theta } \beta \theta ^2 \left( 1- \lambda x^{\theta } \right) ^{-1-\frac{1}{\lambda }}}{ \left( e^{\theta }-1\right) \left( 1+\frac{e^{-\theta +\theta \left( 1-\lambda x^{\theta } \right) ^{-\frac{1}{\lambda }}}-1}{e^{\theta }-1}\right) }, \frac{h^{\prime }(x)}{h(x)}-\left( \frac{1}{\lambda }+1\right) \frac{\lambda \theta x^{\theta -1}}{1-\lambda x^{\theta }}\\&\quad =\frac{\theta -1}{x}+\theta ^{2}x^{\theta -1}(1-\lambda x^{\theta })^{-\frac{1}{\lambda }-1} -\frac{e^{-\theta +\theta \left( 1-\lambda x^{\theta } \right) ^{-\frac{1}{\lambda }}} x^{-1+\theta } \beta \theta ^2 \left( 1-\lambda x^{\theta } \right) ^{-1-\frac{1}{\lambda }}}{ \left( e^{\theta }-1\right) \left( 1+\frac{e^{-\theta +\theta \left( 1-\lambda x^{\theta } \right) ^{-\frac{1}{\lambda }}}-1}{e^{\theta }-1}\right) }, \end{aligned}$$

which after some algebraic manipulations we get Equation(8).

Sufficiency:

Suppose Equation(8) holds, then it may be re-written as

$$\begin{aligned}&\frac{h^{\prime }(x)}{(h(x))^{2}} =\frac{\left( 1+\dfrac{e^{-\theta +\theta \left( 1-\lambda x^{\theta }\right) ^{-\frac{1}{\lambda }}}-1}{e^{\theta }-1}\right) ^{-\beta }}{\left[ \beta \theta ^{2} \left( 1+\dfrac{e^{-\theta +\theta \left( 1-\lambda x^{\theta }\right) ^{-\frac{1}{\lambda }}}-1}{e^{\theta }-1}\right) ^{-\beta -1} \dfrac{e^{-\theta +\theta \left( 1-\lambda x^{\theta }\right) ^{-\frac{1}{\lambda }}} x^{\theta -1}\left( 1-\lambda x^{\theta }\right) ^{-\frac{1}{\lambda }-1}}{e^{\theta }-1}\right] ^{2}} \\&\qquad \times \frac{d\left\{ \beta \theta ^{2} \left( 1+\dfrac{e^{-\theta +\theta \left( 1-\lambda x^{\theta }\right) ^{-\frac{1}{\lambda }}}-1}{e^{\theta }-1}\right) ^{-\beta -1} \dfrac{e^{\theta -\theta \left( 1-\lambda x^{\theta }\right) ^{-\frac{1}{\lambda }}} x^{\theta -1}\left( 1-\lambda x^{\theta }\right) ^{-\frac{1}{\lambda }-1}}{e^{\theta }-1}\right\} }{dx}+1. \end{aligned}$$

From the above differential equation, we have

$$\begin{aligned} h(u)=\frac{e^{-\theta +\theta \left( 1-\lambda u^{\theta }\right) ^{-\frac{1}{\lambda }}} u^{-1+\theta } \beta \theta ^2 \left( 1-\lambda u^{\theta } \right) ^{-1-\frac{1}{\lambda }}}{ \left( e^{\theta }-1\right) \left( 1+\frac{e^{-\theta +\theta \left( 1-\lambda u^{\theta }\right) ^{-\frac{1}{\lambda }}}-1}{e^{\theta }-1}\right) }. \end{aligned}$$
(10)

Integrating the Equation (10) from 0 to x we get

$$\begin{aligned} -\ln (1-F_{{LDGW}}(x|\lambda , \theta , \beta ))=-\ln \left( \left( 1+\dfrac{e^{-\theta +\theta \left( 1-\lambda x^{\theta }\right) ^{-\frac{1}{\lambda }}}-1}{e^{\theta }-1} \right) ^{-\beta }\right) , \end{aligned}$$

which after simplification yields

$$\begin{aligned} F_{{LDGW}}(x|\lambda , \theta , \beta )=1-\left( 1+\dfrac{e^{-\theta +\theta \left( 1-\lambda x^{\theta }\right) ^{-\frac{1}{\lambda }}}-1}{e^{\theta }-1}\right) ^{-\beta }. \end{aligned}$$

This completes the proof. \(\square \)

Appendix-B

$$\begin{aligned}&\frac{\partial \ell (\Theta )}{\partial \theta } =-n-\frac{e^{\theta } n}{e^{\theta }-1}+\frac{2 n}{\theta }+\sum _{i=1}^n \ln (x_i)+\left( 1+\frac{1}{\lambda }\right) \sum _{i=1}^n \frac{\lambda \ln (x_i) x_i^{\theta }}{1-\lambda x_i^{\theta }}\\&\qquad \qquad \quad +\theta \sum _{i=1}^n \ln (x_i) x_i^{\theta } \left( 1-\lambda x_i^{\theta }\right) {}^{-1-\frac{1}{\lambda }}+\sum _{i=1}^n \left( 1-\lambda x_i^{\theta }\right) {}^{-\frac{1}{\lambda }}-(1+\beta )\\&\qquad \quad \times \sum _{i=1}^n \frac{-\frac{e^{\theta } \left( -1+e^{-\theta +\theta \left( 1-\lambda x_i^{\theta }\right) {}^{-\frac{1}{\lambda }}}\right) }{\left( -1+e^{\theta }\right) ^2}+\frac{e^{-\theta +\theta \left( 1-\lambda x_i^{\theta }\right) {}^{-\frac{1}{\lambda }}} \left( -1+\theta \ln (x_i) x_i^{\theta } \left( 1-\lambda x_i^{\theta }\right) {}^{-1-\frac{1}{\lambda }}-\left( 1-\lambda x_i^{\theta }\right) {}^{-\frac{1}{\lambda }}\right) }{-1+e^{\theta }}}{1+\frac{e^{-\theta +\theta \left( 1-\lambda x_i^{\theta }\right) {}^{-\frac{1}{\lambda }}}-1}{e^{\theta }-1}}=0,\\&\frac{\partial \ell (\Theta )}{\partial \lambda } =\frac{1}{\lambda ^2}\sum _{i=1}^n \ln (1-\lambda x_i^{\theta })+\left( 1+\frac{1}{\lambda }\right) \sum _{i=1}^n \frac{x_i^{\theta }}{1-\lambda x_i^{\theta }}\\&\qquad \qquad + \theta \sum _{i=1}^n \left( 1-\lambda x_i^{\theta }\right) {}^{-\frac{1}{\lambda }} \left( \frac{\ln (1-\lambda x_i^{\theta })}{\lambda ^2}+\frac{x_i^{\theta }}{\lambda \left( 1-\lambda x_i^{\theta }\right) }\right) \\&\qquad \qquad -(1+\beta ) \sum _{i=1}^n -\frac{e^{-\theta +\theta \left( 1-\lambda x_i^{\theta }\right) {}^{-\frac{1}{\lambda }}} \theta \left( 1-\lambda x_i^{\theta }\right) {}^{-\frac{1}{\lambda }} \left( \frac{\ln (1-\lambda x_i^{\theta })}{\lambda ^2}+\frac{x_i^{\theta }}{\lambda \left( 1-\lambda x_i^{\theta }\right) }\right) }{\left( e^{\theta }-1\right) \left( 1+\frac{e^{-\theta +\theta \left( 1-\lambda x_i^{\theta }\right) {}^{-\frac{1}{\lambda }}}-1}{e^{\theta }-1}\right) }=0 \end{aligned}$$

and

$$\begin{aligned} \frac{\partial \ell (\Theta )}{\partial \beta }=\frac{n}{\beta }-\sum _{i=1}^n \ln \left[ 1+\frac{e^{-\theta +\theta \left( 1-\lambda x_i^{\theta }\right) {}^{-\frac{1}{\lambda }}}-1}{e^{\theta }-1}\right] =0. \end{aligned}$$

Appendix-C

See Tables 18,19, 20, 21, 22, 23, 24 and 25.

Table 18 Variances and co-variances of MLEs for data set-I to IV
Table 19 Confidence interval with level of significance \( \alpha \) for data set-I
Table 20 Confidence interval with level of significance \( \alpha \) for data set-II
Table 21 Confidence interval with level of significance \( \alpha \) for data set-III
Table 22 Confidence interval with level of significance \( \alpha \) for data set-IV
Table 23 Return level estimates \(\hat{x_T}\) for T of data set-I to IV
Table 24 Return periods for some largest values of data set-I and II
Table 25 Return periods for some largest values of data set-III and IV

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, T., Bakouch, H.S. & Chesneau, C. A new probability model with application to heavy-tailed hydrological data. Environ Ecol Stat 26, 127–151 (2019). https://doi.org/10.1007/s10651-019-00422-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10651-019-00422-7

Keywords

Mathematics Subject Classification

Navigation