Skip to main content
  • Original Article
  • Published:

Tree mortality in a mixed deciduous forest in Northwestern Russia over 22 years

Mortalité des arbres dans une forêt feuillue mixte du nordouest de la Russie pendant 22 ans

Abstract

  • • We studied mortality rates of birch, small-leaved linden, pedunculate oak, Norway maple, black alder, common ash and Norway spruce, assessed through two inventories of 12 664 trees in the unmanaged mixed deciduous forests of Oranienbaum Park, northwestern Russia, in 1981 and 2003.

  • • Our objectives were to evaluate if (a) long-term mortality rates vary among species, and if (b) crown condition, age and tree size affect the probability of mortality.

  • • Over this period, tree mortality rates in the park varied annually from 1 to 3% for healthy and moderately healthy trees, and from 3.9 to 9.3% for declining trees. The lowest mortality rates were observed for small-leaved linden and oak (0.8 and 1.0%, respectively), and the highest rate for birch (2.7%). We found (1) a significant and consistent association between tree condition and the probability of mortality, and (2) significantly higher mortality rates in smaller trees of ash, maple and oak.

  • • The effect of species-specific biology on mortality rates in the Oranienbaum Park was largely overridden by the “health status” and environmental conditions of the trees (e.g. degree of crown shading). The observed rates were similar to the estimates from natural temperate deciduous forests in both Europe and North America, indicating similar intensity of mortality in these ecosystems under natural conditions.

Résumé

  • • Nous avons étudié les taux de mortalité du bouleau, du tilleul à petites feuilles, du chêne pédonculé, de l’érable plane, de l’aulne, du frêne commun, et de l’épicéa par le biais de deux inventaires concernant 12 664 arbres, en 1981 et 2003, dans les forêts mixtes non gérées de l’Oranienbaum Park, dans le nord-ouest de la Russie.

  • • Nos objectifs étaient d’évaluer si (a) à long terme les taux de mortalité varient selon les espèces, et si (b) l’état du houppier, l’âge et la taille des arbres affectent la probabilité de mortalité.

  • • Au cours de cette période, les taux de mortalité des arbres dans le parc ont varié annuellement de 1 à 3 % pour les arbres sains et modérément sains, et de 3,9 à 9,3 % pour les arbres dépérissants. Les taux de mortalité les plus bas ont été observés pour le tilleul à petites feuilles et le chêne (respectivement 0,8 et 1,0 %) et le taux le plus élevé pour le bouleau (2,7 %). Nous avons trouvé (1) une importante et constante association entre la condition de l’arbre et la probabilité de mortalité, et (2) les taux de mortalité significativement les plus élevés chez les plus petits arbres chez le frêne, l’érable et le chêne.

  • • Les effets biologiques de l’espèce sur les taux de mortalité ont été en grande partie annulés par l’état de santé des arbres et les conditions environnementales (par exemple le degré d’ombrage de la couronne). Les taux observés étaient similaires aux estimations obtenues pour les forêts naturelles tempérées en Europe et en Amérique du Nord, indiquant une intensité similaire de mortalité dans ces écosystèmes en conditions naturelles.

References

  • Atkinson M.D., 1992. Betula pendula Roth (B. verrucosa Ehrh.) and B. pubescens Ehrh. J. Ecol. 80: 837–870.

    Google Scholar 

  • Blomberg P., Billqvist M., and Ivarsson K., 2004. Personliga porträtt av skånska jättar. In: Blomberg P. and Billqvist M. (Eds.), Skånska jätteträd, Naturskyddföreningen i Skåne, Lund, pp. 119–142.

    Google Scholar 

  • Bobiec A., 2002. Living stands and dead wood in the Bialowieza forest: suggestions for restoration management. For. Ecol. Manage. 165: 125–140.

    Article  Google Scholar 

  • Dahl E., 1998. The phytogeography of Northern Europe: British Isles, Fennoscandia and adjacent areas. Cambridge university press.

  • Dobbertin M. and Biging G.S., 1998. Using the non-parametric classifier CART to model forest tree mortality. For. Sci. 44: 507–516.

    Google Scholar 

  • Dobbertin M. and Brang P., 2001. Crown defoliation improves tree mortality models. For. Ecol. Manage. 141: 271–284.

    Article  Google Scholar 

  • Dobrovolsky A., 2007. Dynamics of natural mortality and tree structure in “Oranienbaum” park. ESS Reports No. 92. Southern Swedish forest research centre, SLU Alnarp. 42 p.

  • Drobyshev I., Anderson S., and Sonesson K., 2007a. Crown condition dynamics of oak in southern Sweden 1988–1999. Environ. Monit. Assess. 134: 199–210.

    Article  PubMed  CAS  Google Scholar 

  • Drobyshev I., Linderson H., and Sonesson K., 2007b. Temporal mortality pattern of pedunculate oaks in southern Sweden. Dendrochronologia 24: 97–108.

    Article  Google Scholar 

  • Drobyshev I., Niklasson M., Linderson H., Sonesson K., Karlsson M., Nilsson S.G., and Lannér J., 2008. Lifespan and mortality of old oaks — combining empirical and modelling approaches to support their management in Southern Sweden. Ann. For. Sci. 65: 401.

    Article  Google Scholar 

  • Ford C.R. and Brooks J.R., 2002. Detecting forest stress and decline in response to increasing river flow in southwest Florida, USA. For. Ecol. Manage. 160: 45–64.

    Article  Google Scholar 

  • Franklin J.F., Shugart H.H., and Harmon M.E., 1987. Tree death as an ecological process. Bioscience 37, 550–556.

    Article  Google Scholar 

  • Gorbatenko S.B., 2001. Historical and architectural guide: St. Petersburg. European House Publishing, St. Petersburg. 448 p.

    Google Scholar 

  • Grime J.P., Hudgson J.G., and Hunt R., 1988. Comparative plant ecology. Unwin Hyman, London.

    Google Scholar 

  • Jonsson M.T., Fraver S., Jonsson B.G., Dynesius M., Rydgard M., and Esseen P.A., 2007. Eighteen years of tree mortality and structural change in an experimentally fragmented Norway spruce forest. For. Ecol. Manage. 242: 306–313.

    Article  Google Scholar 

  • Jutras S., Hokka H., Alenius V., and Salminen H., 2003. Modeling mortality of individual trees in drained peatland sites in Finland. Silva Fenn. 37: 235–251.

    Google Scholar 

  • Klecka W.R., 1980. Discriminant analysis. Sage, Beverly Hills, CA.

    Google Scholar 

  • Kussner R., 2003. Mortality patterns of Quercus, Tilia, and Fraxinus germinants in a floodplain forest on the river Elbe, Germany. For. Ecol. Manage. 173: 37–48.

    Article  Google Scholar 

  • Laurent M., Antoine N., and Joel G., 2003. Effects of different thinning intensities on drought response in Norway spruce (Picea abies (L.) Karst.). For. Ecol. Manage. 183: 47–60.

    Article  Google Scholar 

  • Lemieux C. and Filion L., 2004. Tree-ring evidence for a combined influence of defoliators and extreme climatic events in the dynamics of a high-altitude balsam fir forest, Mount Megantic, southern Quebec. Can. J. For. Res. 34, 1436–1443.

    Article  Google Scholar 

  • Lin Y., Hulting M.L., and Augspurger C.K., 2004. Causes of spatial patterns of dead trees in forest fragments in Illinois. Plant Ecology 170: 15–27.

    Article  Google Scholar 

  • Lorenz M., Becher G., Fisher R., and Seidling W. 2000. Forest condition in Europe. Results of the 1999. crown condition survey. 2000 technical report, Geneva and Brussels, UN/ECE and EC, 86 p.

    Google Scholar 

  • Lundqvist L. and Nilson K., 2007. Regeneration dynamics in an unevenaged virgin Norway spruce forest in northern Sweden. Scand. J. For. Res. 22, 304–309.

    Article  Google Scholar 

  • Maximov V.A., Savenkov P.F., and Erf E.A., 1982. Inventory description of the Lomonosov Park. Leningrad, The Head-ofiice of Cultural Affairs Committee, Executive Committee of the City of Leningrad, 36 p.

  • Monserud R.A. and Sterba H., 1996. A basal area increment model for individual trees growing in even- and uneven-aged forest stands in Austria. For. Ecol. Manage. 80: 57–80.

    Article  Google Scholar 

  • Monserud R.A. and Sterba H., 1999. Modeling individual tree mortality for Austrian forest species. For. Ecol. Manage. 113: 109–123.

    Article  Google Scholar 

  • Nakashizuka T., Iida S., Tanaka H., Shibata M., Abe S., Masaki T., and Niiyama K., 1992. Community dynamics of Ogawa forest reserve, a species rich deciduous forest, Central Japan. Vegetatio 103: 105–112.

    Google Scholar 

  • Niklasson M. and Nilsson S.G., 2005. Skogsdynamik och arters bevarande. Studentliteratur. ISBN: 9789144034461.

  • Ozolincius R., Miksys V., and Stakenas V., 2005. Growth-independent mortality of Lithuanian forest tree species. Scand. J. For. Res. 20: 153–160.

    Article  Google Scholar 

  • Pacala S.W., Canham C.D., Saponara J., Silander J.A., Kobe R.K., and Ribbens E., 1996. Forest models defined by field measurements: Estimation, error analysis and dynamics. Ecol. Monogr. 66: 1–43.

    Article  Google Scholar 

  • Pedersen B.S., 1998. The role of stress in the mortality of midwestern oaks as indicated by growth prior to death. Ecology 79: 79–93.

    Article  Google Scholar 

  • Pedersen B.S., 1999. The mortality of midwestern overstory oaks as a bioindicator of environmental stress. Ecol. Appl. 9: 1017–1027.

    Article  Google Scholar 

  • Pestryakov V.K., 1973. Soils of Leningrad region. Lenizdat publishing house, Leningrad.

    Google Scholar 

  • Peterken G.F., 1996. Natural woodlands. Cambridge university press, Cambridge, 522 p.

    Google Scholar 

  • Peterson D.L. and Ryan K.C., 1986. Modeling postfire conifer mortality for long-range planning. Environ. Manage. 10: 797–808.

    Article  Google Scholar 

  • Repola J., Hokka H., and Penttila T., 2006. Thinning intensity and growth of mixed spruce-birch stands on drained peatlands in Finland. Silva Fenn. 40: 83–99.

    Google Scholar 

  • Runkle J.R., 1982. Patterns of disturbance in some old-growth mesic forests of eastern North America. Ecology 63: 1533–1546.

    Article  Google Scholar 

  • Runkle J.R., 1985. Disturbance regimes in temperate forests. In: Pickett, S.T.A. and White P.S. (Eds.), The ecology of natural disturbance and patch dynamics, Academic press, pp. 17–33.

  • Runkle J.R., 2000. Canopy tree turnover in old-growth mesic forests of eastern North America. Ecology 81: 554–567.

    Article  Google Scholar 

  • Sonesson K., 1999. Oak decline in southern Sweden. Scand. J. For. Res. 14: 368–375.

    Article  Google Scholar 

  • Suarez M.L., Ghermandi L., and Kitzberger T., 2004. Factors predisposing episodic drought-induced tree mortality in Nothofagus — site, climatic sensitivity and growth trends. J. Ecol. 92: 954–966.

    Article  Google Scholar 

  • Tuhus E., 1997. Natural mortality of trees. Rapport fra Skogforsk. 6. Skogforsk 6/97: 1–28.

    Google Scholar 

  • Vygodskaya N.N., Schulze E.D., Tchebakova N.M., Karpachevskii L.O., Kozlov D., Sidorov K.N., Panfyorov M.I., Abrazko M.A., Shaposhnikov E.S., Solnzeva O.N., Minaeva T.Y., Jeltuchin A.S., Wirth C., and Pugachevskii A.V., 2002. Climatic control of stand thinning in unmanaged spruce forests of the southern taiga in European Russia. Tellus Series B-Chemical and Physical Meteorology 54: 443–461.

    Article  Google Scholar 

  • WMO 2008. : World Meteorological Organization 2008. Weather Information for St. Petersburg. WWW address http://www. worldweather.org/107/c00203.htm Accessed 2008-02-22.

  • Wolf A., Moller P.F., Bradshaw R.H.W., and Bigler J., 2004. Storm damage and long-term mortality in a semi-natural, temperate deciduous forest. For. Ecol. Manage. 188: 197–210.

    Article  Google Scholar 

  • Zhao D.H., Borders B., and Wilson M., 2004. Individual-tree diameter growth and mortality models for bottomland mixed-species hardwood stands in the lower Mississippi alluvial valley. For. Ecol. Manage. 199: 307–322.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Drobyshev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drobyshev, I., Dobrovolsky, A. & Neshataev, V. Tree mortality in a mixed deciduous forest in Northwestern Russia over 22 years. Ann. For. Sci. 66, 411 (2009). https://doi.org/10.1051/forest/2009018

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009018

Keywords

Mots-clés