Skip to main content
Log in

Catalytic Activity of KOH–CaO–Al2O3 Nanocomposites in Biodiesel Production: Impact of Preparation Method

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

CaO–Al2O3 mixed oxides were prepared by different preparation methods–such as sol–gel, co-precipitation, impregnation, and MW-assisted solution combustion synthesis (M-SCS)–and then impregnated with KOH to examine their activity in transesterification of canola oil to biodiesel. Synthesized nanocomposites were characterized by XRD, FTIR, BET/BJH, and SEM/EDX. The mixed oxides, except those prepared by M-SCS method, exhibited a nearly amorphous structure with some diffraction peaks of calcium oxide. Due to high combustion temperature during the M-SCS process, Ca ions could diffuse into the alumina lattice to form CaAl2O4. But upon impregnation with KOH, the former transformed to Ca12Al14O33. The KOH/Ca12Al14O33 nanocatalyst prepared by M-SCS method exhibited better basicity, mean pore size, and activity, as well as highest Ca/Al and K/Al ratios. In the presence of this catalyst, around 86% of canola oil were converted to biodiesel in the transesterification reaction carried out at 65°C, methanol/oil molar ratio 12: 1, 4 wt% catalyst, 4 h. Such parameters seem appropriate for industrial application. The M-SCS method is technically simple, cost effective, time/energy saving and requires no further thermal treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbaszaadeh, A., Ghobadian, B., Omidkhah, M.R. and Najafi, G., Current biodiesel production technologies: A comparative review, Energy Conv. Manage., 2012, vol. 63, pp. 138–148. doi https://doi.org/10.1016/j.enconman.2012.02.027

    Article  CAS  Google Scholar 

  2. Jeenpadiphat, S. and Tungasmita, D.N., Acid-activated pillar bentonite as a novel catalyst for the esterification of high FFA oil, Powder Technol., 2013, vol. 237, pp. 634–640. doi https://doi.org/10.1016/j.powtec.2013.02.001

    Article  CAS  Google Scholar 

  3. Borges, M.E. and Diaz, L., Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review, Renewable Sustain. Energy Rev., 2012, vol. 16, no. 5, pp. 2839–2849. doi https://doi.org/10.1016/j.rser.2012.01.071

    Article  CAS  Google Scholar 

  4. Atadashi, I.M., Aroua, M.K., Abdul Aziz, A.R., and Sulaiman, N.M.N., The effects of catalysts in biodiesel production: A review, J. Ind. Eng. Chem., 2013, vol. 19, no. 1, pp. 14–26. doi https://doi.org/10.1016/j.jiec.2012.07.009

    Article  CAS  Google Scholar 

  5. Komintarachat, C. and Chuepeng, S., Solid acid catalyst for biodiesel production from waste used cooking oils, Ind. Eng. Chem. Res., 2009, vol. 48, no. 20, pp. 9350–9353. doi https://doi.org/10.1021/ie901175d

    Article  CAS  Google Scholar 

  6. Vyas, A.P., Subrahmanyam, N. and Patel, P.A., Production of biodiesel through transesterification of Jatropha oil using KNO3/Al2O3 solid catalyst, Fuel, 2009, vol. 88, no. 4, pp. 625–628. doi https://doi.org/10.1016/j.fuel.2008.10.033

    Article  CAS  Google Scholar 

  7. Arzamendi, G., Campo, I., Arguiñarena, E., Sánchez, M., Montes, M. and Gandia, L.M., Synthesis of biodiesel with heterogeneous NaOH/alumina catalysts: Comparison with homogeneous NaOH, Chem. Eng. J., 2007, vol. 134, nos. 1–3, pp. 123–130. doi https://doi.org/10.1016/j.cej.2007.03.049

    Article  CAS  Google Scholar 

  8. Taufiq-Yap, Y.H., Abdullah, N.F., and Basri, M., Biodiesel production via transesterification of palm oil using NaOH/A12O3 catalysts, Sains Malays., 2011, vol. 40, no. 6, pp. 587–594.

    CAS  Google Scholar 

  9. Teo, S.H., Taufiq-Yap, Y.H., and Ng, F.L., Alumina supported/unsupported mixed oxides of Ca and Mg as heterogeneous catalysts for transesterification of Nannochloropsis sp. microalga’s oil, Energy Conv. Manage., 2014, vol. 88, pp. 1193–1199. doi https://doi.org/10.1016/j.enconman.2014.04.049

    Article  CAS  Google Scholar 

  10. Wang, R., Yang, S., Yin, S., Song, B., Bhadury, P., Xue, W., Tao, S., Jia, Z., Liu, D., and Gao, L., Development of solid base catalyst X/Y/MgO/γ-Al2O3 for optimization of preparation of biodiesel from Jatropha curcas L. seed oil, Front. Chem. Eng. China, 2008, vol. 2, no. 4, pp. 468–472.

    Article  CAS  Google Scholar 

  11. Sankaranarayanan, T.M., Pandurangan, A., Banu, M., and Sivasanker, S., Transesterification of sunflower oil over MoO3 supported on alumina, Appl. Catal. A, 2011, vols. 409–410, pp. 239–247. doi https://doi.org/10.1016/j.apcata.2011.10.013

    Article  CAS  Google Scholar 

  12. Amani, H., Ahmad, Z., Asif, M., and Hameed, B.H., Transesterification of waste cooking palm oil by MnZr with supported alumina as a potential heterogeneous catalyst, J. Ind. Eng. Chem., 2014, vol. 20, no. 6, pp. 4437–4442. doi https://doi.org/10.1016/j.jiec.2014.02.012

    Article  CAS  Google Scholar 

  13. Benjapornkulaphong, S., Ngamcharussrivichai, C., and Bunyakiat, K., Al2O3-supported alkali and alkali earth metal oxides for transesterification of palm kernel oil and coconut oil, Chem. Eng. J., 2009, vol. 145, no. 3, pp. 468–474. doi https://doi.org/10.1016/j.cej.2008.04.036

    Article  CAS  Google Scholar 

  14. Umdu, E.S., Tuncer, M., and Seker, E., Transesterification of Nannochloropsis oculata microalga’s lipid to biodiesel on Al2O3 supported CaO and MgO catalysts, Bioresour. Technol., 2009, vol. 100, no. 11, pp. 2828–2831. doi https://doi.org/10.1016/j.biortech.2008.12.027

    Article  CAS  Google Scholar 

  15. Umdu, E.S. and Seker, E., Transesterification of sunflower oil on single step sol–gel made Al2O3 supported CaO catalysts: Effect of basic strength and basicity on turnover frequency, Bioresour. Technol., 2012, vol. 106, no. 2, pp. 178–181. doi https://doi.org/10.1016/j.biortech.2011.11.135

    Article  CAS  Google Scholar 

  16. Zabeti, M., Daud, W.M.A.W., and Aroua, M.K., Optimization of the activity of CaO/Al2O3 catalyst for biodiesel production using response surface methodology, Appl. Catal. A, 2009, vol. 366, no. 1, pp. 154–159. doi https://doi.org/10.1016/j.apcata.2009.06.047

    Article  CAS  Google Scholar 

  17. Zabeti, M., Daud, W.M.A.W., and Aroua, M.K., Biodiesel production using alumina-supported calcium oxide: An optimization study, Fuel Process. Technol., 2010, vol. 91, no. 2, pp. 243–248. doi https://doi.org/10.1016/j.fuproc.2009.10.004

    Article  CAS  Google Scholar 

  18. Noiroj, K., Intarapong, P., Luengnaruemitchai, A., and Jai-In, S., A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil, Renewable Energy, 2009, vol. 34, no. 4, pp. 1145–1150. doi https://doi.org/10.1016/j.renene.2008.06.015

    Article  CAS  Google Scholar 

  19. Hájek, M., Skopal, F., Čapek, L., Černoch, M., and Kutálek, P., Ethanolysis of rapeseed oil by KOH as homogeneous and as heterogeneous catalyst supported on alumina and CaO, Energy, 2012, vol. 48, no. 1, pp. 392–397. doi https://doi.org/10.1016/j.energy.2012.06.052

    Article  CAS  Google Scholar 

  20. Liao, C.-C. and Chung, T.-W., Optimization of process conditions using response surface methodology for the microwave-assisted transesterification of Jatropha oil with KOH impregnated CaO as catalyst, Chem. Eng. Res. Des., 2013, vol. 91, no. 12, pp. 2457–2464. doi https://doi.org/10.1016/j.cherd.2013.04.009

    Article  CAS  Google Scholar 

  21. Xie, W., Peng, H. and Chen, L., Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst, Appl. Catal. A, 2006, vol. 300, no. 1, pp. 67–74. doi https://doi.org/10.1016/j.apcata.2005.10.048

    Article  CAS  Google Scholar 

  22. Ma, G., Hu, W., Pei, H., Jiang, L., Ji, Y., and Mu, R., Study of KOH/Al2O3 as heterogeneous catalyst for biodiesel production via in situ transesterification from microalgae, Environ. Technol., 2014, vol. 36, no. 5, pp. 622–627. doi https://doi.org/10.1080/09593330.2014.954629

    Article  CAS  Google Scholar 

  23. Yan, S., Lu, H., and Liang, B., Supported CaO catalysts used in the transesterification of rapeseed oil for the purpose of biodiesel production, Energy Fuels, 2007, vol. 22, no. 1, pp. 646–651. doi https://doi.org/10.1021/ef070105o

    Article  CAS  Google Scholar 

  24. Moradi, G., Mohadesi, M., Rezaei, R., and Moradi, R., Biodiesel production using CaO/γ-Al2O3 catalyst synthesized by sol-gel method, Can. J. Chem. Eng., 2015, vol. 93, no. 9, pp. 1531–1538. doi https://doi.org/10.1002/cjce.22258

    Article  CAS  Google Scholar 

  25. Mahdavi, V. and Monajemi, A., Optimization of operational conditions for biodiesel production from cottonseed oil on CaO–MgO/Al2O3 solid base catalysts, J. Taiwan Inst. Chem. Eng., 2014, vol. 45, no. 5, pp. 2286–2292. doi https://doi.org/10.1016/j.jtice.2014.04.020

    Article  CAS  Google Scholar 

  26. Zhou, H., Sun, J., Ren, B., Wang, F., Wu, X., and Bai, S., Effects of alkaline media on the controlled large mesopore size distribution of bimodal porous silicas via sol–gel methods, Powder Technol., 2014, vol. 259, pp. 46–51. doi https://doi.org/10.1016/j.powtec.2014.03.060

    Article  CAS  Google Scholar 

  27. González, E.A.Z., García-Guaderrama, M., Villalobos, M.R., Dellamary, F.L., Kandhual, S., Rout, N.P., Tiznado, H., and Arizaga, G.G.C., Potassium titanate as heterogeneous catalyst for methyl transesterification, Powder Technol., 2015, vol. 280, pp. 201–206. doi https://doi.org/10.1016/j.powtec.2015.04.030

    Article  CAS  Google Scholar 

  28. López-Delgado, A., López, F.A., Gonzalo-Delgado, L., López-Andrés, S., and Alguacil, F.J., Study by DTA/TG of the formation of calcium aluminate obtained from an aluminum hazardous waste, J. Therm. Anal. Calorim., 2009, vol. 99, no. 3, pp. 999–1004. doi https://doi.org/10.1007/s10973-009-0597-z

    Article  CAS  Google Scholar 

  29. Hashemzehi, M., Saghatoleslami, N., and Nayebzadeh, H., A study on the structure and catalytic performance of ZnxCu1–xAl2O4 catalysts synthesized by the solution combustion method for the esterification reaction, C. R. Acad. Sci. Chim., 2016, vol. 19, no. 8, pp. 955–962. doi https://doi.org/10.1016/j.crci.2016.05.006

    Article  CAS  Google Scholar 

  30. Ebadzadeh, T. and Asadian, K., Microwave-assisted synthesis of nanosized α-Al2O3, Powder Technol., 2009, vol. 192, no. 2, pp. 242–244. doi https://doi.org/10.1016/j.powtec.2009.01.001

    Article  CAS  Google Scholar 

  31. Ye, B., Qiu, F., Sun, C., Li, Y., and Yang, D., Biodiesel production from soybean oil using heterogeneous solid base catalyst, J. Chem. Technol. Biotechnol, 2014, vol. 89, no. 7, pp. 988–997. doi https://doi.org/10.1002/jctb.4190

    Article  CAS  Google Scholar 

  32. Yang, L., Lv, P., Yuan, Z., Luo, W., Li, H., Wang, Z., and Miao, C., Synthesis of biodiesel by different carriers supported KOH catalyst, Adv. Mater. Res., 2012, vols. 581–582, pp. 197–201. doi https://doi.org/10.4028/www.scientific.net/AMR.581-582.197

    Article  CAS  Google Scholar 

  33. Pasupulety, N., Gunda, K., Liu, Y., Rempel, G.L., and Ng, F.T.T., Production of biodiesel from soybean oil on CaO/Al2O3 solid base catalysts, Appl. Catal. A, 2013, vol. 452, no. 1, pp. 189–202. doi https://doi.org/10.1016/j.apcata.2012.10.006

    Article  CAS  Google Scholar 

  34. Toniolo, J.C., Lima, M.D., Takimi, A.S., and Bergmann, C.P., Synthesis of alumina powders by the glycine–nitrate combustion process, Mater. Res. Bull., 2005, vol. 40, no. 3, pp. 561–571. doi https://doi.org/10.1016/j.materresbull.2004.07.019

    Article  CAS  Google Scholar 

  35. Castro, C.S., Garcia Júnior, L.C.F., and Assaf, J.M., The enhanced activity of Ca/MgAl mixed oxide for transesterification, Fuel Process. Technol., 2014, vol. 125, pp. 73–78. doi https://doi.org/10.1016/j.fuproc.2014.03.024

    Article  CAS  Google Scholar 

  36. Ruszak, M., Witkowski, S., Pietrzyk, P., Kotarba, A., and Sojka, Z., The role of intermediate calcium aluminate phases in solid state synthesis of mayenite (Ca12Al14O33), Funct. Mater. Lett., 2011, vol. 4, no. 2, pp. 183–186. doi https://doi.org/10.1142/S1793604711001907

    Article  CAS  Google Scholar 

  37. Boysen, H., Kaiser-Bischoff, I., Lerch, M., Berendts, S., Hoelzel, M., and Senyshyn, A., Disorder and diffusion in mayenite, Acta Phys. Pol., 2010, vol. 117, no. 1, pp. 38–41. doi https://doi.org/10.12693/APhysPolA.117.38

    Article  CAS  Google Scholar 

  38. Avci, N., Korthout, K., Newton, M.A., Smet, P.F., and Poelman, D., Valence states of europium in CaAl2O4:Eu phosphors, Opt. Mater. Express, 2012, vol. 2, no. 3, pp. 321–330.

    Article  CAS  Google Scholar 

  39. Rahmani Vahid, B. and Haghighi, M., Urea–nitrate combustion synthesis of MgO/MgAl2O4 nanocatalyst used in biodiesel production from sunflower oil: Influence of fuel ratio on catalytic properties and performance, Energy Conv. Manage., 2016, vol. 126, pp. 362–372. doi https://doi.org/10.1016/j.enconman.2016.07.050

    Article  CAS  Google Scholar 

  40. Jacobson, K., Gopinath, R., Meher, L.C., and Dalai, A.K., Solid acid catalyzed biodiesel production from waste cooking oil, Appl. Catal. B, 2008, vol. 85, nos. 1–2, pp. 86–91. doi https://doi.org/10.1016/j.apcatb.2008.07.005

    Article  CAS  Google Scholar 

  41. Shao, G.N., Sheikh, R., Hilonga, A., Lee, J.E., Park, Y.-H., and Kim, H.T., Biodiesel production by sulfated mesoporous titania–silica catalysts synthesized by the sol–gel process from less expensive precursors, Chem. Eng. J., 2013, vols. 215–216, pp. 600–607. doi https://doi.org/10.1016/j.cej.2012.11.059

    Article  CAS  Google Scholar 

  42. Chang, Y.-P., Chang, P.-H., Lee, Y.-T., Lee, T.-J., Lai, Y.-H., and Chen, S.-Y., Morphological and structural evolution of mesoporous calcium aluminate nanocomposites by microwave-assisted synthesis, Micropor. Mesopor. Mater., 2014, vol. 183, pp. 134–142. doi https://doi.org/10.1016/j.micromeso.2013.09.013

    Article  CAS  Google Scholar 

  43. Meng, Y.-L., Wang, B.-Y., Li, S.-F., Tian, S.-J., and Zhang, M.-H., Effect of calcination temperature on the activity of solid Ca/Al composite oxide-based alkaline catalyst for biodiesel production, Bioresour. Technol., 2013, vol. 128, no. 2, pp. 305–309. doi https://doi.org/10.1016/j.biortech.2012.10.152

    Article  CAS  Google Scholar 

  44. Alba-Rubio, A.C., Santamaría-González, J., Mérida-Robles, J.M., Moreno-Tost, R., Martín-Alonso, D., Jiménez-López, A., and Maireles-Torres, P., Heterogeneous transesterification processes by using CaO supported on zinc oxide as basic catalysts, Catal. Today, 2010, vol. 149, nos. 3–4, pp. 281–287. doi https://doi.org/10.1016/j.cattod.2009.06.024

    Article  CAS  Google Scholar 

  45. Albuquerque, M.C.G., Azevedo, D.C.S., Cavalcante, C.L., Jr., Santamaría-González, J., Mérida-Robles, J.M., Moreno-Tost, R., Rodríguez-Castellón, E., Jiménez-López, A., and Maireles-Torres, P., Transesterification of ethyl butyrate with methanol using MgO/CaO catalysts, J. Mol. Catal. A, 2009, vol. 300, nos. 1–2, pp. 19–24. doi https://doi.org/10.1016/j.molcata.2008.10.033

    Article  CAS  Google Scholar 

  46. Shahraki, H., Entezari, M.H., and Goharshadi, E.K., Sono-synthesis of biodiesel from soybean oil by KF/γ-Al2O3 as a nano-solid-base catalyst, Ultrason. Sonochem., 2015, vol. 23, pp. 266–274. doi https://doi.org/10.1016/j.ultsonch.2014.09.010

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Nayebzadeh.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayebzadeh, H., Saghatoleslami, N., Haghighi, M. et al. Catalytic Activity of KOH–CaO–Al2O3 Nanocomposites in Biodiesel Production: Impact of Preparation Method. Int. J Self-Propag. High-Temp. Synth. 28, 18–27 (2019). https://doi.org/10.3103/S1061386219010102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386219010102

Keywords

Navigation