Skip to main content
Log in

The Effects of Temperature on Iron Sulfide Nanocrystals Prepared from Thermal Decomposition of Bis-(N-methylbenzyldithiocarbamato)iron(II) Complex

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Bis-(N-methylbenzyldithiocarbamato)iron(II) complex was thermolyzed at 120, 180 and 240 °C to investigate the effects of temperature on the structural and optical properties of the as-prepared iron sulfide nanocrystals. Powder X-ray diffraction studies revealed a pyrrhotite-4M (Fe7S8) crystalline phase for iron sulfide nanocrystals (FeS1) obtained at 120 °C and pyrrhotite-6C (Fe11S12) phases for iron sulfide nanocrystals (FeS2 and FeS3) obtained at 180 and 240 °C. HRTEM images confirmed the crystallite sizes of the iron sulfide nanoparticles are in the range 2.04–4.77 for FeS1 obtained at 120 °C, 4.82–11.12 for FeS2 obtained at 180 °C and 6.50–12.39 nm for FeS3 iron sulfide nanocrystals obtained at 240 °C. These results confirmed that increase in temperature resulted in the formation of iron sulfide nanocrystals with larger diameter. The optical band gaps (Eg) of the iron sulfide nanocrystals are in the range 3.70–3.76 eV. The iron sulfide nanocrystals were incorporated into hydroxyethyl cellulose (HEC) matrix to prepare iron sulfide/HEC nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  1. Y. Wu, D. Wang, Y. Li, Nanocrystals from solutions: catalysts. Chem. Soc. Rev. 43, 2112–2124 (2014)

    Article  CAS  Google Scholar 

  2. J.M. Costa-Fernández, R. Pereiro, A. Sanz-Medel, The use of luminescent quantum dots for optical sensing. Trends Anal. Chem. 25, 207–218 (2006)

    Article  Google Scholar 

  3. Z.H. Farooqi, S.R. Khan, R. Begum, A. Ijaz, Review on synthesis, properties, characterization, and applications of responsive microgels fabricated with gold nanostructures. Rev. Chem. Eng. 32, 49–69 (2016)

    Article  CAS  Google Scholar 

  4. Y. Lu, Y. Chen, R.A. Gemeinhart, W. Wu, T. Li, Developing nanocrystals for cancer treatment. Nanomedicine 10, 2537–2552 (2015)

    Article  CAS  Google Scholar 

  5. K.M.M. Abou El-Nour, A.A. Eftaiha, A. Al-Warthan, R.A.A. Ammar, Synthesis and applications of silver nanoparticles. Arab. J. Chem 3, 135–140 (2010)

    Article  CAS  Google Scholar 

  6. X. Shi, K. Sun, L.P. Balogh, J.R. Baker, Synthesis, characterization, and manipulation of dendrimer-stabilized iron sulfide nanoparticles. Nanotechnology 17, 4554–4560 (2006)

    Article  CAS  Google Scholar 

  7. P.D. Matthews, M. Akhtar, M.A. Malik, N. Revaprasadu, P. O’Brien, Synthetic routes to iron chalcogenide nanoparticles and thin films. Dalton Trans. 45, 18803–18812 (2016)

    Article  CAS  Google Scholar 

  8. L. Fei, Y. Jiang, Y. Xu, G. Chen, Y. Li, X. Xu, S. Deng, H. Luo, A novel solvent-free thermal reaction of ferrocene and sulfur for one-step synthesis of iron sulfide and carbon nanocomposites and their electrochemical performance. J. Power Sources 265, 1–5 (2014)

    Article  CAS  Google Scholar 

  9. S. Mlowe, D.J. Lewis, M.A. Malik, J. Raftery, E.B. Mubofu, P. O’Brien, N. Revaprasadu, Heterocyclic dithiocarbamato-iron (III) complexes: single-source precursors for aerosol-assisted chemical vapour deposition (AACVD) of iron sulfide thin films. Dalton Trans. 45, 2647–2655 (2016)

    Article  CAS  Google Scholar 

  10. M. Akhtar, M.A. Malik, F. Tuna, P. O’Brien, The synthesis of iron sulfide nanocrystals from tris (O-alkylxanthato) iron (III) complexes. J. Mater. Chem. 1, 8766–8774 (2013)

    Article  CAS  Google Scholar 

  11. M. Akhtar, J. Akhter, M.A. Malik, P. O’Brien, F. Tuna, J. Raftery, M. Helliwell, Deposition of iron sulfide nanocrystals from single source precursors. J. Mater. Chem. 21, 9737–9745 (2011)

    Article  CAS  Google Scholar 

  12. W. Han, M. Gao, Investigations on iron sulfide nanosheets prepared via a single-source precursor approach. Cryst. Growth Des. 8, 1023–1030 (2008)

    Article  CAS  Google Scholar 

  13. S. Mlowe, S.S. Garje, T. Moyo, N. Revaprasadu, Magnetic iron sulfide nanoparticles for potential applications in gas sensing. MRS Adv. 1, 235–240 (2016)

    Article  CAS  Google Scholar 

  14. A. Akhoondi, M. Aghaziarati, N. Khandan, Production of highly pure iron disulfide nanoparticles using hydrothermal synthesis method. Appl. Nanosci. 3, 417–422 (2013)

    Article  CAS  Google Scholar 

  15. J.T. Lue, Physical properties of nanomaterials. Encyclopedia of Nanoscience and Nanotechnology, Edited by H.S. Nalwa, 2007, X, 1–46

  16. P.A. Ajibade, A.M. Paca, Tris(dithiocarbamato)iron(III) complexes as precursors for iron sulfide nanocrystals and iron sulfide-hydroxyethyl cellulose composites. J. Sulfur. Chem. 40(1), 52–64 (2019)

    Article  CAS  Google Scholar 

  17. C.J. Barrelet, Y. Wu, D.C. Bell, C.M. Lieber, Synthesis of CdS and ZnS nanowires using single-source molecular precursors. J. Am. Chem. Soc. 125, 11498–11499 (2003)

    Article  CAS  Google Scholar 

  18. M.A. Malik, N. Revaprasadu, P. O’Brien, Air-stable single-source precursors for the synthesis of chalcogenide semiconductor nanoparticles. Chem. Mater. 13, 913–920 (2001)

    Article  CAS  Google Scholar 

  19. T. Trindade, P. O’Brien, X.-M. Zhang, Synthesis of CdS and CdSe nanocrystallites using a novel single-molecule precursors approach. Chem. Mater. 9, 523–530 (1997)

    Article  CAS  Google Scholar 

  20. P.A. Ajibade, B.C. Ejelonu, Group 12 dithiocarbamate complexes: synthesis, spectral studies and their use as precursors for metal sulfides nanoparticles and nanocomposites. Spectrochim. Acta A 113, 408–414 (2013)

    Article  CAS  Google Scholar 

  21. A.M. Paca, P.A. Ajibade, Synthesis and structural studies of iron sulphide nanocomposites prepared from Fe(III) dithiocarbamates single source precursors. Mater. Chem. Phys. 202, 143–150 (2017)

    Article  CAS  Google Scholar 

  22. C. Buchmaier, M. Glänzer, A. Torvisco, P. Poelt, K. Wewerka, B. Kunert, K. Gatterer, G. Trimmel, T. Rath, Nickel sulfide thin films and nanocrystals synthesized from nickel xanthate precursors. J. Mater. Sci. 52, 10898–10914 (2017)

    Article  CAS  Google Scholar 

  23. K. Cavell, J. Hill, R. Magee, Synthesis and characterisation of some secondary amine-dithiocarbamate salts. J. Inorg. Nucl. Chem. 41, 1277–1280 (1979)

    Article  CAS  Google Scholar 

  24. P. Vanitha, P. O’Brien, Phase control in the synthesis of magnetic iron sulfide nanocrystals from a cubane-type Fe–S cluster. J. Am. Chem. Soc. 130, 17256–17257 (2008)

    Article  CAS  Google Scholar 

  25. T. Duan, W. Lou, X. Wang, Q. Xue, Size-controlled synthesis of orderly organized cube-shaped lead sulfide nanocrystals via a solvothermal single-source precursor method. Colloids Surf. A 310, 86–93 (2007)

    Article  CAS  Google Scholar 

  26. S. Sibokoza, M. Moloto, N. Moloto, P. Sibiya, The effect of temperature and precursor concentration on the synthesis of cobalt sulphide nanoparticles using cobalt diethyldithiocarbamate complex. Chalcogenide Lett. 14, 69–78 (2017)

    CAS  Google Scholar 

  27. S. Santhi, C. Radhakrishnan Namboori, Synthesis, characterization and spectral studies of Fe(III) and Cr(III) schiff base complexes with acetoacetanilidoethylenediamine. Orient. J. Chem. 27, 1203–1208 (2011)

    CAS  Google Scholar 

  28. S.M. Mamba, A.K. Mishra, B.B. Mamba, P.B. Njobeh, M.F. Dutton, E. Fosso-Kankeu, Spectral, thermal andin vitroantimicrobial studies of cyclohexylamine-N-dithiocarbamate transition metal complexes. Spectrochim. Acta A 77, 579–587 (2010)

    Article  Google Scholar 

  29. F.P. Andrew, P.A. Ajibade, Synthesis, characterization, and electrochemical studies of Co(II, III) dithiocarbamate complexes. J. Coord. Chem. 72(5–7), 1171–1186 (2019)

    Article  CAS  Google Scholar 

  30. G. Kharadi, Effect of the thermal decomposition and in vitro antimicrobial activity of mixed ligand copper(II) complexes. Synth. React. Inorg. Met-Organ. Nano-Met. Chem. 42, 424–431 (2012)

    Article  CAS  Google Scholar 

  31. E.-S.A. El-Samanody, A.K. El-Sawaf, M. Madkour, Synthesis, crystal structure, spectral and thermal investigations of morpholinyldithiocarbamate complexes: a novel coordinated precursors for efficient metal oxide nanophotocatalysts. Inorg. Chim. Acta 487, 307–315 (2019)

    Article  CAS  Google Scholar 

  32. V.D. Benedini, P.A. Antunes, É.T. Cavalheiro, G.O. Chierice, Thermoanalytical and solution stability studies of hexamethylenedithiocarbamates. J. Braz. Chem. Soc. 17, 680–688 (2006)

    Article  CAS  Google Scholar 

  33. P.A. Ajibade, J.Z. Mbese, B. Omondi, Group 12 dithiocarbamate complexes: synthesis, characterization and X-ray crystal structures of Zn(II) and Hg(II) complexes and their use as precursors for metal sulfide nanoparticles. Nano- Met Chem. 47(2), 202–212 (2017)

    CAS  Google Scholar 

  34. J. Watson, B. Cressey, A. Roberts, D. Ellwood, J. Charnock, A. Soper, Structural and magnetic studies on heavy-metal-adsorbing iron sulphide nanoparticles produced by sulphate-reducing bacteria. J. Magn. Magn. Mater. 214, 13–30 (2000)

    Article  CAS  Google Scholar 

  35. J.Z. Mbese, P.A. Ajibade, Synthesis, spectroscopic, structural and optical studies of Ru2S3 nanoparticles prepared from single-source molecular precursors. J. Mol. Struct. 1143, 274–281 (2017)

    Article  CAS  Google Scholar 

  36. N.L. Botha, P.A. Ajibade, Effect of temperature on crystallite sizes of copper sulfide nanocrystals prepared from copper(II) dithiocarbamate single source precursor. Mater. Sci. Semicond. 43, 149–154 (2016)

    Article  CAS  Google Scholar 

  37. W. Ming-Dong, Z. Dao-Yun, L. Yi, Z. Lin, Z. Chang-Xi, H. Zhen-Hui, C. Di-Hu, W. Li-Shi, Determination of thickness and optical constants of ZnO thin films prepared by filtered cathode vacuum arc deposition. Chin. Phys. Lett. 25, 743–746 (2008)

    Article  Google Scholar 

  38. J.Z. Mbese, P.A. Ajibade, A simple route to ruthenium sulfide nanoparticles via thermal decomposition of precursor complexes. J. Nano Res. 54, 158–171 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciate the financial support from National Research Foundation and Sasol, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Ajibade.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajibade, P.A., Paca, A.M. The Effects of Temperature on Iron Sulfide Nanocrystals Prepared from Thermal Decomposition of Bis-(N-methylbenzyldithiocarbamato)iron(II) Complex. J Inorg Organomet Polym 30, 1327–1338 (2020). https://doi.org/10.1007/s10904-019-01264-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01264-3

Keywords

Navigation