Skip to main content
Log in

Age-Specific Reproductive Investment and Offspring Performance in an Orb-web Spider, Argiope radon

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Temporal variation in reproductive investment, e.g. maternal egg provisioning, has a substantial effect on offspring fitness therefore has received great attention by evolutionary biologists. Maternal allocation into egg size and egg content directly influences performance of offspring in many taxa, but spiders have rarely been investigated in this regard. In this study, we investigate the temporal changes in maternal reproductive investment and offspring performance in an orb-web, Argiope radon. A group of male and female spiders were mated randomly in the laboratory. Female spiders were kept under standard condition until they laid egg sacs. For each egg sac, egg sac mass, egg size and egg protein content were measured across all egg sacs. Once the spiderlings emerged, emerging time and toleration to starvation of the spiderlings were recorded. Egg sacs laid early in life were heavier, have larger eggs and offspring emerge sooner than the egg sacs laid by the old females. The spiderlings from the early egg sacs were more likely to emerge, however, these offspring had less toleration to starvation than the egg sacs laid by old females. There was no significant correlation between egg size and egg protein content with offspring performance. The results showed how the female spiders strategically allocate resources to egg sacs and its consequences on the offspring emerging time and toleration to starvation. This study suggests an adaptive maternal reproductive investment strategy which allows the female spiders to gain maximum fitness in each reproductive bout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ameri, M., Rasekh, A., & Michaud, J. P. (2014). Body size affects host defensive behavior and progeny fitness in a parasitoid wasp, Lysiphlebus fabarum. Entomologia Experimentalis et Applicata, 150, 259–268.

    Article  Google Scholar 

  • Andrade, M. C. B., & Banta, E. M. (2003). Value of male remating and functional sterility in redback spiders, (Foelix 1996). Animal Behaviour, 63, 857–870.

    Article  Google Scholar 

  • Averill, A. L., & Prokopy, R. J. (1987). Intraspecific competition in the tephritid fruit fly Rhagoletis pomonella. Ecology, 68, 878–886.

    Article  Google Scholar 

  • Bartholomew, G. A., & Casey, T. M. (1977). Body temperature and oxygen consumption during rest and activity in relation to body size in some tropical beetles. Journal of Thermal Biology, 2, 173–176.

    Article  Google Scholar 

  • Bartholomew, G. A., & Casey, T. M. (1978). Oxygen consumption of moths during rest, pre-flight warm-up, and flight in relation to body size and wing morphology. Journal of Experimental Biology, 76, 11–25.

    Google Scholar 

  • Bates, D. M., Machler, M., Bolker, B. M., & Walker, S. C. (2014). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, p. 67.

  • Beckman, K. B., & Ames, B. N. (1998). The free radical theory of aging matures. Physiological Reviews, 78, 547–581.

    Article  CAS  PubMed  Google Scholar 

  • Begon, M., & Parker, G. A. (1986). Should egg size and clutch size decrease with age? Oikos, 47, 293–302.

    Article  Google Scholar 

  • Berkeley, S. A., Chapman, C., & Sogard, S. M. (2004). Maternal age as a determinant of larval growth and survival in a marine fish, Sebastes melanops. Ecology, 85, 1258–1264.

    Article  Google Scholar 

  • Bernardo, J. (1996). The particular maternal effect of propagule size, especially egg size: Patterns, models, quality of evidence and interpretations’. American Zoologist, 36, 216–236.

    Article  Google Scholar 

  • Bonduriansky, R., & Day, T. (2009). Nongenetic inheritance and its evolutionary implications. Annual Review of Ecology Evolution and Systematics, 40, 103–125.

    Article  Google Scholar 

  • Bowen, W. D., Oftedal, O. T., Boness, D. J., & Iverson, S. J. (1994). The effect of maternal age and other factors on birth mass in the harbour seal. Canadian Journal of Zoology, 72, 8–14.

    Article  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  • Christians, J. K. (2002). Avian egg size: Variation within species and inflexibility within individuals. Biological Reviews, 77, 1–26.

    Article  PubMed  Google Scholar 

  • Coelho, J. R., & Moore, A. J. (1989). Allometry of resting metabolic rate in cockroaches. Comparative Biochemistry and Physiology Part A, Physiology, 94, 587–590.

    Article  CAS  Google Scholar 

  • Crawley, M. J. (2014). Statistics: An introduction using R (2nd ed.). London: Wiley.

    Google Scholar 

  • Crouch, T. E., & Lubin, Y. (2000). Effects of climate and prey availability on foraging in a social spider, Stegodyphus mimosarum (Araneae, Eresidae). The Journal of Arachnology, 28, 158–168.

    Article  Google Scholar 

  • Deventer, S. A., Herberstein, M. E., Mayntz, D., O’Hanlon, J. C., & Schneider, J. M. (2017). Female fecundity and offspring survival are not increased through sexual cannibalism in the spider Larinioides sclopetarius. Journal of Evolutionary Biology, 30, 2146–2155.

    Article  CAS  PubMed  Google Scholar 

  • Fox, C. W. (1993). The influence of maternal age and mating frequency on egg size and offspring performance in Callosobruchus maculatus (Coleoptera: Bruchidae). Oecologia, 96, 139–146.

    Article  PubMed  Google Scholar 

  • Fox, C. W., & Czesak, M. E. (2000). Evolutionary ecology of progeny size in arthropods. Annual Review of Entomology, 45, 341–369.

    Article  CAS  PubMed  Google Scholar 

  • Fox, C. W., & Dingle, H. (1994). Dietary mediation of maternal age effects on offspring performance in a seed beetle (Coleoptera, Bruchidae). Functional Ecology, 8, 600–606.

    Article  Google Scholar 

  • Giesel, J. T. (1988). Effects of parental photoperiod on development time and density sensitivity of progeny in Drosophila melanogaster. Evolution, 42, 1348–1350.

    Article  PubMed  Google Scholar 

  • Giron, D., & Casas, J. (2003). Mothers reduce egg provisioning with age. Ecology Letters, 6, 273–277.

    Article  Google Scholar 

  • Halaj, J., Ross, D. W., & Moldenke, A. R. (1998). Habitat structure and prey availability as predictors of the abundance and community organization of spiders in Western Oregon forest canopies. The Journal of Arachnology, 26, 203–220.

    Google Scholar 

  • Harman, D. (1956). Aging: A theory based on free radical and radiation chemistry. Journal of Gerontology, 11, 298–300.

    Article  CAS  PubMed  Google Scholar 

  • Harvey, G. T. (1977). Mean weight and rearing performance of successive egg clusters of eastern spruce budworm (lepidoptera: Tortricidae). The Canadian Entomologist, 109, 487–496.

    Article  Google Scholar 

  • Heimpel, G. E., Mangel, M., & Rosenheim, J. A. (1998). Effects of time limitation and egg limitation on lifetime reproductive success of a parasitoid in the field. The American Naturalist, 152, 273–289.

    Article  CAS  PubMed  Google Scholar 

  • Huestis, D. L., & Marshall, J. L. (2006). Interaction between maternal effects and temperature affects diapause occurrence in the cricket Allonemobius socius. Oecologia, 146, 513–520.

    Article  PubMed  Google Scholar 

  • Johnson, J. C., Miles, L. S., Trubl, P. J., & Hagenmaier, A. (2014). Maternal effects on egg investment and offspring performance in black widow spiders. Animal Behaviour, 91, 67–73.

    Article  Google Scholar 

  • Jorgenson, J. T., Festa-Bianchet, M., Lucherini, M., & Wishart, W. D. (1993). Effects of body size, population density, and maternal characteristics on age at first reproduction in bighorn ewes. Canadian Journal of Zoology, 71, 2509–2517.

    Article  Google Scholar 

  • Kivelä, S. M., & Välimäki, P. (2008). Competition between larvae in a butterfly Pieris napi and maintenance of different life-history strategies. Journal of Animal Ecology, 77, 529–539.

    Article  PubMed  Google Scholar 

  • Leonard, D. E. (1970). Intrinsic factors causing qualitative changes in populations of Porthetria dispar (Lepidoptera: Lymantriidae). The Canadian Entomologist, 102, 239–249.

    Article  Google Scholar 

  • Li, D. (2002). Hatching responses of subsocial spitting spiders to predation risk. Proceedings of the Royal Society B: Biological Sciences, 269, 2155–2161.

    Article  PubMed  Google Scholar 

  • Macke, E., Magalhaes, S., Khan, H. D.-T., Luciano, A., Frantz, A., Facon, B., et al. (2011). Sex allocation in haplodiploids is mediated by egg size: Evidence in the spider mite Tetranychus urticae Koch. Proceedings of the Royal Society B: Biological Sciences, 278, 1054–1063.

    Article  PubMed  Google Scholar 

  • Marshall, D. J., Cook, C. N., & Emlet, R. B. (2006). Offspring size effects mediate competitive interactions in a colonial marine invertebrate. Ecology, 87, 214–225.

    Article  PubMed  Google Scholar 

  • Marshall, D. J., & Keough, M. J. (2004). When the going gets rough: Effect of maternal size manipulation on larval quality. Marine Ecology Progress Series, 272, 301–305.

    Article  Google Scholar 

  • Marshall, D. J., & Uller, T. (2007). When is a maternal effect adaptive? Oikos, 116, 1957–1963.

    Article  Google Scholar 

  • Messina, F. J. (1991). Life-history variation in a seed beetle: Adult egg-laying vs. larval competitive ability. Oecologia, 85, 447–455.

    Article  PubMed  Google Scholar 

  • Morse, D. H. (1994). American Arachnological Society numbers of broods produced by the crab spider Misumena vatia (Araneae, Thomisidae). The Journal of Arachnology, 22, 195–199.

    Google Scholar 

  • Mousseau, T. A. (1998). The adaptive significance of maternal effects. Trends in Ecology & Evolution, 13, 403–407.

    Article  CAS  Google Scholar 

  • Mousseau, T. A., Uller, T., Wapstra, E., & Badyaev, A. V. (2009). Evolution of maternal effects: Past and present. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1035–1038.

    Article  Google Scholar 

  • Muller, D., Giron, D., Desouhant, E., Rey, B., Casas, J., Lefrique, N., et al. (2017). Maternal age affects offspring nutrient dynamics. Journal of Insect Physiology, 101, 123–131.

    Article  CAS  PubMed  Google Scholar 

  • Perrins, C. M., & Moss, D. (1974). Survival of young great tits in relation to age of female parent. Ibis, 116, 220–224.

    Article  Google Scholar 

  • Pianka, E. R., & Parker, W. S. (1975). Age-specific reproductive tactics. The American Naturalist, 109, 453–464.

    Article  Google Scholar 

  • Plaistow, S. J., St. Clair, J. J. H., Grant, J., & Benton, T. G. (2007). How to put all your eggs in one basket: Empirical patterns of offspring provisioning throughout a mother’s lifetime. The American Naturalist, 170, 520–529.

    Article  Google Scholar 

  • Pöykkö, H., & Mänttäri, S. (2012). Egg size and composition in an ageing capital breeder—Consequences for offspring performance. Ecological Entomology, 37, 330–341.

    Article  Google Scholar 

  • Rao, D., Webster, M., Heiling, A. M., Bruce, M. J., & Herberstein, M. E. (2009). The aggregating behaviour of Argiope radon, with special reference to web decorations. Journal of Ethology, 27(1), 35–42. https://doi.org/10.1007/s10164-007-0080-x.

    Article  Google Scholar 

  • Reid, J. M., Bignal, E. M., Bignal, S., McCracken, D. I., Monaghan, P., & Bogdanova, M. I. (2010). Parent age, lifespan and offspring survival: Structured variation in life history in a wild population. Journal of Animal Ecology, 79, 851–862.

    PubMed  Google Scholar 

  • Richards, L. J., & Myers, J. H. (1980). Maternal influences on size and emergence time of the cinnabar moth. Canadian Journal of Zoology, 58, 1452–1457.

    Article  CAS  PubMed  Google Scholar 

  • Riechert, S. E., & Tracy, C. R. (1975). Thermal balance and prey availability: Bases for a model relating web-site charactristics to spider reproductive success. Ecology, 56(2), 265–284.

    Article  Google Scholar 

  • Rose, M. R. (1991). Evolutionary biology of aging (1st ed.). New York: Oxford University Press.

    Google Scholar 

  • Rossiter, M. C. (1991). Maternal effects generate variation in life history: Consequences of egg weight plasticity in the gypsy moth. Functional Ecology, 5, 386–393.

    Article  Google Scholar 

  • Salomon, M., Schneider, J., & Lubin, Y. (2005). Maternal investment in a spider with suicidal maternal care, Stegodyphus lineatus (Araneae, Eresidae). Oikos, 109, 614–622.

    Article  Google Scholar 

  • Scharf, I., Bauerfeind, S. S., Blanckenhorn, W. U., & Schäfer, M. A. (2010). Effects of maternal and offspring environmental conditions on growth, development and diapause in latitudinal yellow dung fly populations. Climate Research, 43, 115–125.

    Article  Google Scholar 

  • Schneider, J. M., & Andrade, M. C. B. (2011). Mating behaviour and sexual selection. In M. E. Herberstein (Ed.), Spider behaviour flexibility and versatility (pp. 215–274). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Semlitsch, R. D. (1985). Reproductive strategy of a facultatively paedomorphic salamander Ambystoma talpoideum. Oecologia, 65, 305–313.

    Article  PubMed  Google Scholar 

  • Shea, N., Pen, I., & Uller, T. (2011). Three epigenetic information channels and their different roles in evolution. Journal of Evolutionary Biology, 24, 1178–1187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinervo, B. (1990). The evolution of maternal investment in lizards: An experimental and comparative analysis of egg size and its effects on offspring performance. Evolution, 44, 279–294.

    Article  PubMed  Google Scholar 

  • Sinervo, B., & McEdward, L. R. (1988). Developmental consequences of an evolutionary change in egg size: An experimental test. Evolution, 42, 885–899.

    Article  PubMed  Google Scholar 

  • Singh, K., & Omkar, (2009). Effect of parental ageing on offspring developmental and survival attributes in an aphidophagous ladybird, Cheilomenes sexmaculata. Journal of Applied Entomology, 133, 500–504.

    Article  Google Scholar 

  • Smith, C. C., & Fretwell, S. D. (1974). The optimal balance between size and number of offspring. American Naturalist, 108, 499–506.

    Article  Google Scholar 

  • Steinwascher, K. (1984). Egg size variation in Aedes aegypti: Relationship to body size and other variables. American Midland Naturalist, 112, 76–84.

    Article  Google Scholar 

  • Thomas, C. S. (1983). The relationships between breeding experience, egg volume and reproductive success of the kittiwake Rissa tridactyla. Ibis, 125, 567–574.

    Article  Google Scholar 

  • Uller, T. (2008). Developmental plasticity and the evolution of parental effects. Trends in Ecology & Evolution, 23, 432–438.

    Article  Google Scholar 

  • Vargas, G., Michaud, J. P., & Nechols, J. R. (2012). Maternal effects shape dynamic trajectories of reproductive allocation in the ladybird Coleomegilla maculata. Bulletin of Entomological Research, 102, 558–565.

    Article  CAS  PubMed  Google Scholar 

  • Vargas, G., Michaud, J. P., & Nechols, J. R. (2013). Cryptic maternal effects in Hippodamia convergens vary with maternal age and body size. Entomologia Experimentalis et Applicata, 146(2), 302–311. https://doi.org/10.1111/eea.12027.

    Article  Google Scholar 

  • Vargas, G., Michaud, J. P., Nechols, J. R., & Moreno, C. A. (2014). Age-specific maternal effects interact with larval food supply to modulate life history in Coleomegilla maculata. Ecological Entomology, 39, 39–46.

    Article  Google Scholar 

  • Wang, H. Y., Einhouse, D. W., Fielder, D. G., Rudstam, L. G., Vandergoot, C. S., VanDeValk, A. J., et al. (2012). Maternal and stock effects on egg-size variation among walleye Sander vitreus stocks from the Great Lakes region. Journal of Great Lakes Research, 38, 477–489.

    Article  Google Scholar 

  • Wasserman, S. S., & Asami, T. (1985). The effect of maternal age upon fitness of progeny in the southern cowpea weevil, Callosobruchus maculatus. Oikos, 45, 191–196.

    Article  Google Scholar 

  • Wilkinson, L. R., & Gibbons, J. W. (2005). Patterns of reproductive allocation: Clutch and egg size variation in three freshwater turtles. Copeia, 2005, 868–879.

    Article  Google Scholar 

  • Winkler, D. W., & Wallin, K. (1987). Offspring size and number: A life history model linking effort per offspring and total effort. The American Naturalist, 129, 708–720.

    Article  Google Scholar 

  • Zschokke, S., & Herberstein, M. E. (2005). Laboratory methods for maintaining and studying web-building spiders. The Journal of Arachnology, 33, 205–213.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a PhD scholarship, International Research Excellence Scholarship (iMQRS). We would like to thank Justin McNab and Alexis Diodati for their help with housing the spiders. We also thank Russell Bonduriansky and Jutta M. Schneider for their helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ameri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ameri, M., Kemp, D.J., Barry, K.L. et al. Age-Specific Reproductive Investment and Offspring Performance in an Orb-web Spider, Argiope radon. Evol Biol 46, 207–215 (2019). https://doi.org/10.1007/s11692-019-09476-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-019-09476-8

Keywords

Navigation