Skip to main content
Log in

Biocatalysts Based on Bacterial Cells with Amidase Activity for the Synthesis of Acrylic Acid from Acrylamide

  • BIOCATALYSIS
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The biocatalytic synthesis of acrylic acid from acrylamide by the Rhodococcus erythropolis 4-1 and Alcaligenes faecalis 2 strains with amidase activity is studied. The optimum pH values are 6–7 for R. erythropolis 4-1 and 7–7.5 for A. faecalis 2, while the optimum temperature is 20–50°С for both strains. The optimum acrylamide concentration is 150 mM for R. erythropolis 4-1 and 250 mM for A. faecalis 2. The synthesis of acrylic acid with fractional additions of a substrate catalyzed by the biomass of A. faecalis 2 is more effective than using R. erythropolis 4-1. The biocatalyst is best stored at −20°C. The amidase activity of A. faecalis 2 cells immobilized on chitosan activated with glutaraldehyde and non-activated chitosan did not decline during the storage of either wet or dried granules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Wang, X., Wang, H., and Sun, Y., Chem., 2017, vol. 3, no. 2, pp. 211–228.

    Article  CAS  Google Scholar 

  2. Li, C., Zhu, Q., Cui, Z., Wang, B., Fang, Y., and Tan, T., Chem. Eng. Sci., 2018, vol. 183, pp. 288–294.

    Article  CAS  Google Scholar 

  3. Manzini, S., Huguet, N., Trapp, O., Paciello, R.A., and Schaub, T., Catal. Today, 2017, vol. 281, part 2, pp. 379–386.

    Article  CAS  Google Scholar 

  4. Hollering, M., Dutta, B., and Kühn, F.E., Coord. Chem. Rev., 2016, vol. 309, pp. 51–67.

    Article  CAS  Google Scholar 

  5. Rasteiro, L.F., Vieira, L.H., Possato, L.G., Pulcinelli, S.H., Santilli, C.V., and Martins, L., Catal. Today, 2017, vol. 296, pp. 10–18.

    Article  CAS  Google Scholar 

  6. Xu, X., Lin, J., and Cen, P., Chin. J. Chem. Eng., 2006, vol. 14, no. 4, pp. 419–427.

    Article  CAS  Google Scholar 

  7. Zhang, X., Lin, L., Zhang, T., Liu, H., and Zhang, X., Chem. Eng. J., 2016, vol. 284, pp. 934–941.

    Article  CAS  Google Scholar 

  8. Shen, M., Zheng, Y.-G., and Shen, Y.-C., Process Biochem., 2009, vol. 44, no. 7, pp. 781–785.

    Article  CAS  Google Scholar 

  9. Poltavskaya, S.V., Kozulina, T.N., Singirtsev, I.N., Kozulin, S.V., Shub, G.M., and Voronin, S.P., Biotekhnologiya, 2004, no. 1, pp. 62–70.

  10. RF Patent 2337954, 2008.

  11. Maksimova, Yu.G., Maksimov, A.Yu., Demakov, V.A., Kozlov, S.V., Ovechkina, G.V., and Olontsev, V.F., Appl. Biochem. Microbiol., 2011, no. 47, pp. 681–687.

  12. Maksimova, Yu.G., Demakov, V.A., and Ovechkina, G.V., Vestn. Biotekhnol. Fiz.-Khim. Biol. im. Yu.A. Ovchinnikova, 2011, vol. 7, no. 2, pp. 5–10.

    Google Scholar 

  13. Dawson, R., Elliott, D., Elliott, W., and Jones, K., Data for Biochemical Research, Oxford: Clarendon Press, 1986.

    Google Scholar 

  14. Joshi, S.J. and Abed, R.M.M., Environ. Processes, 2017, vol. 4, no. 2, pp. 463–476.

    Article  CAS  Google Scholar 

  15. Zödl, B., Schmid, D., Wassler, G., Gundacker, C., Leibetseder, V., Thalhammer, T., and Ekmekcioglu, C., Toxicology, 2007, vol. 232, nos. 1–2, pp. 99–108.

  16. Ermilova, E.V., Molekulyarnye aspekty adaptatsii prokariot (Molecular Aspects of Prokaryote Adaptation), St. Petersburg: St. Petersburg Univ., 2007.

  17. Maksimova, Yu.G., Vasil’ev, D.M., Zorina, A.S., Ovechkina, G.V., and Maksimov, A.Yu., Appl. Biochem. Microbiol., 2018, vol. 54, no. 2, pp. 173–178.

    Article  CAS  Google Scholar 

  18. Thakur, N., Kumar, V., Sharma, N.K., Thakur, S., and Bhalla, T.C., Protein Pept. Lett., 2016, vol. 23, no. 2, pp. 152–158.

    Article  CAS  PubMed  Google Scholar 

  19. Glinskii, S.A., Kozulin, S.V., Kozulina, T.N., Poltavskaya, S.V., Yanenko, A.S., and Leonova, T.E., Biotekhnologiya, 2010, no. 1, pp. 17–24.

Download references

Funding

This work was performed as part of state task no. 01201353249.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. G. Maksimova, M. S. Yakimova or A. Yu. Maksimov.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This work did not involve any research using animals as objects.

CONFLICT OF INTEREST

The authors declare there was no conflict of interest.

Additional information

Translated by A. Bulaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimova, Y.G., Yakimova, M.S. & Maksimov, A.Y. Biocatalysts Based on Bacterial Cells with Amidase Activity for the Synthesis of Acrylic Acid from Acrylamide. Catal. Ind. 11, 264–270 (2019). https://doi.org/10.1134/S2070050419030073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050419030073

Keywords:

Navigation