Skip to main content
Log in

Pointwise error estimates of linear finite element method for Neumann boundary value problems in a smooth domain

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Pointwise error analysis of the linear finite element approximation for \(-\,\Delta u + u = f\) in \(\Omega \), \(\partial _n u = \tau \) on \(\partial \Omega \), where \(\Omega \) is a bounded smooth domain in \(\mathbb {R}^N\), is presented. We establish \(O(h^2|\log h|)\) and O(h) error bounds in the \(L^\infty \)- and \(W^{1,\infty }\)-norms respectively, by adopting the technique of regularized Green’s functions combined with local \(H^1\)- and \(L^2\)-estimates in dyadic annuli. Since the computational domain \(\Omega _h\) is only polyhedral, one has to take into account non-conformity of the approximation caused by the discrepancy \(\Omega _h \ne \Omega \). In particular, the so-called Galerkin orthogonality relation, utilized three times in the proof, does not exactly hold and involves domain perturbation terms (or boundary-skin terms), which need to be addressed carefully. A numerical example is provided to confirm the theoretical result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakaev, N.Y., Thomée, V., Wahlbin, L.B.: Maximum-norm estimates for resolvents of elliptic finite element operators. Math. Comput. 72, 1597–1610 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barrett, J.W., Elliott, C.M.: Finite-element approximation of elliptic equations with a Neumann or Robin condition on a curved boundary. IMA J. Numer. Anal. 8, 321–342 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, Berlin (2007)

    Google Scholar 

  4. Čermák, L.: The finite element solution of second order elliptic problems with the Newton boundary condition. Apl. Mat. 28, 430–456 (1983)

    MathSciNet  MATH  Google Scholar 

  5. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (1978)

    MATH  Google Scholar 

  6. Cockburn, B., Solano, M.: Solving Dirichlet boundary-value problems on curved domains by extensions from subdomains. SIAM J. Sci. Comput. 34, A497–A519 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Delfour, M.C., Zolésio, J.-P.: Shapes and Geometries—Metrics, Analysis, Differential Calculus, and Optimization, 2nd edn. SIAM, Philadelphia (2011)

    MATH  Google Scholar 

  8. Geissert, M.: Discrete maximal \({L}^p\) regularity for finite element operators. SIAM J. Numer. Anal. 44, 677–698 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1998)

    MATH  Google Scholar 

  10. Grüter, M., Widman, K.-O.: The Green function for uniformly elliptic equations. Manuscr. Math. 37, 303–342 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kashiwabara, T., Oikawa, I., Zhou, G.: Penalty method with P1/P1 finite element approximation for the stokes equations under the slip boundary condition. Numer. Math. 134, 705–740 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Krasovskiĭ, J.P.: Isolation of singularities of the Green’s function. Math. USSR Izvest. 1, 935–966 (1967)

    Article  Google Scholar 

  14. Schatz, A.H.: Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids: part I. Global estimates. Math. Comput. 67, 877–899 (1998)

    Article  MATH  Google Scholar 

  15. Schatz, A.H., Sloan, I.H., Wahlbin, L.B.: Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point. SIAM J. Numer. Anal. 33, 505–521 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schatz, A.H., Thomée, V., Wahlbin, L.B.: Stability, analyticity, and almost best approximation in maximum norm for parabolic finite element equations. Commun. Pure Appl. Math. 51, 1349–1385 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schatz, A.H., Wahlbin, L.B.: On the quasi-optimality in \({L}_\infty \) of the \(\mathring{H}^1\)-projection into finite element spaces. Math. Comput. 38, 1–22 (1982)

    MathSciNet  MATH  Google Scholar 

  18. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  19. Thomée, V., Wahlbin, L.B.: Stability and analyticity in maximum-norm for simplicial Lagrange finite element semidiscretizations of parabolic equations with Dirichlet boundary conditions. Numer. Math. 87, 373–389 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wahlbin, L.B.: Maximum norm error estimates in the finite element method with isoparametric quadratic elements and numerical integration. R.A.I.R.O. Numer. Anal. 12, 173–202 (1978)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahito Kashiwabara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was supported by JSPS Grant-in-Aid for Young Scientists B (No. 17K14230) and by Grant for The University of Tokyo Excellent Young Researchers. The second author was supported by JSPS Grant-in-Aid for Early-Career Scientists (No. 19K14590).

Appendices

Appendix A: Auxiliary boundary-skin estimates

1.1 Local coordinate representation

We exploit the notations and observations given in [12, Section 8], which we briefly describe here. Since \(\Omega \) is a bounded \(C^\infty \)-domain, there exist a system of local coordinates \(\{(U_r, y_r, \varphi _r)\}_{r=1}^M\) such that \(\{U_r\}_{r=1}^M\) forms an open covering of \(\Gamma \), \(y_r = (y_r', y_{rN})\) is a rotated coordinate of x, and \(\varphi _r{:}\,\Delta _r \rightarrow \mathbb {R}\) gives a graph representation \(\Phi _r(y_r') := (y_r', \varphi _r(y_r'))\) of \(\Gamma \cap U_r\), where \(\Delta _r\) is an open cube in \(\mathbb {R}^{N-1}_{y_r'}\).

For \(S\in \mathcal {S}_h\), we may assume that \(S \cup \pi (S)\) is contained in some \(U_r\), where \(\pi {:}\,\Gamma (\delta _0) \rightarrow \Gamma \) is the projection to \(\Gamma \) given in Sect. . Let \(b_r{:}\,\mathbb {R}^N \rightarrow \mathbb {R}^{N-1}; y_r \mapsto y_r'\) be a projection to the base set and let \(S' := b_r(\pi (S))\). Then \(\Phi _r\) and \(\Phi _{hr} := \pi ^*\circ \Phi _r\), where \(\pi ^*{:}\,\Gamma \rightarrow \Gamma _h\) is the inverse map of \(\pi |_{\Gamma _h}\), give smooth parameterizations of \(\pi (S)\) and S respectively, with the domain \(S'\). We also recall that \(\pi ^*\) is also written as \(\pi ^*(\Phi _r(y_r')) = \Phi _r(y_r') + t^*(\Phi _r(y_r')) n(\Phi _r(y_r'))\).

Let us represent integrals associated with S in terms of local coordinates. In what follows, we omit the subscript r for simplicity. First, surface integrals along \(\pi (S)\) and S are expressed as

$$\begin{aligned} \int _{\pi (S)} f \, d\gamma =&\int _{S'} f(\Phi (y')) \sqrt{{\text {det}} G(y')} \, dy', \nonumber \\ \int _{S} f \, d\gamma _h =&\int _{S'} f(\Phi _h(y')) \sqrt{{\text {det}} G_h(y')} \, dy', \end{aligned}$$

where G and \(G_h\) denote the Riemannian metric tensors obtained from the parameterizations \(\Phi \) and \(\Phi _h\), respectively. Next, let \(\pi (S,\delta ) := \{\bar{x} + tn(\bar{x}){:}\, \bar{x} \in S, \; -\delta \le t\le \delta \}\) be a tubular neighborhood with the base \(\pi (S)\), where \(\delta = C_{0E}h^2\), and consider volume integrals over \(\pi (S, \delta )\). For this we introduce a one-to-one transformation \(\Psi {:}\,S'\times [-\delta , \delta ] \rightarrow \pi (S, \delta )\) by

$$\begin{aligned} y = \Psi (z', t) := \Phi (z') + t n(\Phi (z')) \Longleftrightarrow z' = b(\pi (y)), \; t = d(y). \end{aligned}$$

Then, by change of variables, we obtain

$$\begin{aligned} \int _{\pi (S,\delta )} f(y) \, dy = \int _{S'\times [-\delta , \delta ]} f(\Psi (z', t)) {\text {det}} J(z', t) \, dz' dt, \end{aligned}$$

where \(J := \nabla _{(z', t)} \Psi \) denotes the Jacobi matrix of \(\Psi \). In the formulas above, \({\text {det}}G\), \({\text {det}}G_h\), and \({\text {det}}J\) can be bounded, from above and below, by positive constants depending on the \(C^{1,1}\)-regularity of \(\Omega \), provided h is sufficiently small (for the proof, see [12, Section 8]).

1.2 Proof of (2.2)

In [12, Theorem 8.3], we estimated the \(L^p\)-norm of a function in the full layer \(\Gamma (\delta )\). By slightly modifying the proof there, we can estimate it in \(\Omega _h{\setminus }\Omega \), which is important to dispense with extensions from \(\Omega _h\) to \(\tilde{\Omega }\).

Lemma A.1

Let \(f \in W^{1,p}(\Omega _h) \, (1\le p\le \infty )\) and \(\delta = C_{0E}h^2\). Then we have

$$\begin{aligned} \Vert f\Vert _{L^p(\Omega _h{\setminus }\Omega )} \le C( \delta ^{1/p} \Vert f\Vert _{L^p(\Gamma _h)} + \delta \Vert (n\circ \pi ) \cdot \nabla f\Vert _{L^p(\Omega _h{\setminus }\Omega )} ), \end{aligned}$$

where C is independent of \(\delta \) and f.

Proof

To simplify the notation we use the abbreviation \(t^*(z')\) to imply \(t^*(\Phi (z'))\). For each \(S \in \mathcal {S}_h\) we observe that

$$\begin{aligned}&\int _{(\Omega _h{\setminus }\Omega ) \cap \pi (S,\delta )} |f(y)|^p\,dy\\&\quad = \int _{S'} \int _0^{\max \{0, t^*(z')\}} |f(\Psi (z', t))|^p {\text {det}} J \, dt \, dz' \\&\quad \le C \int _{S'} \int _0^{\max \{0, t^*(z')\}} \Big ( |f(\Phi _h(z'))|^p + |f(\Psi (z', t)) - f(\Phi _h(z'))|^p \Big ) \, dt \, dz' \\&\quad =: I_1 + I_2, \end{aligned}$$

and that for \(z' \in S'\) and \(0\le t\le t^*(z')\)

$$\begin{aligned} |f(\Psi (z', t)) - f(\Phi _h(z'))|&= \left| \int _t^{t^*(z')} n(\Phi (z'))\cdot \nabla f(\Psi (z', s)) \, ds \right| \\&\le \int _0^{t^*(z')} |n(\Phi (z')) \cdot \nabla f(\Psi (z', s))| \, ds \\&\le t^*(z')^{1- 1/p} \left( \int _0^{t^*(z')} |n(\Phi (z')) \cdot \nabla f(\Psi (z', s))|^p \, ds \right) ^{1/p}. \end{aligned}$$

Then it follows that

$$\begin{aligned}&I_1 \le C\Vert t^*\Vert _{L^\infty (S)} \int _{S'} |f(\Phi _h(z'))|^p\, dz'\\&\quad \le C\delta \int _{S'} |f(\Phi _h(z'))|^p \sqrt{{\text {det}}G_h}\,dz' = C\delta \Vert f\Vert _{L^p(S)}^p \end{aligned}$$

and that

$$\begin{aligned} I_2&\le C\Vert t^*\Vert _{L^\infty (S)}^p \int _{S'} \int _0^{\max \{0, t^*(z')\}} |n(\Phi (z')) \cdot \nabla f(\Psi (z', s))|^p {\text {det}} J \, dt \, dz' \\&\le C\delta ^p \Vert n\circ \pi \cdot \nabla f\Vert _{L^p(\pi (S,\delta ))}^p. \end{aligned}$$

Adding up the above estimates for \(S \in \mathcal {S}_h\) gives the conclusion. \(\square \)

Lemma A.2

For a measurable set \(D \subset \mathbb {R}^N\) and \(f \in W^{1,\infty }(\Gamma (\delta ))\) we have

$$\begin{aligned} \Vert f - f\circ \pi \Vert _{L^\infty (\Gamma (\delta ) \cap D)} \le \delta \Vert \nabla f\Vert _{L^\infty (\Gamma (\delta ) \cap D_{2\delta })}, \end{aligned}$$

where \(D_{2\delta } = \{x\in \mathbb {R}^N{:}\, {\text {dist}}(x, D) \le 2\delta \}\).

Proof

This is an easy consequence of the Lipschitz continuity of f. \(\square \)

1.3 Proof of Proposition

Let us prove stability properties of the extension operator P defined in Sect. .

Theorem A.1

Let \(f \in W^{k,p}(\Omega )\) with \(k=0,1,2\), and \(p \in [1, \infty ]\). Then we have

$$\begin{aligned} \Vert Pf\Vert _{W^{k, p}(\Gamma (\delta ))}&\le C\Vert f\Vert _{W^{k, p}(\Omega \cap \Gamma (2\delta ))}, \end{aligned}$$

where C is independent of \(\delta \) and f.

Proof

First, for each \(S \in \mathcal {S}_h\) we show

$$\begin{aligned} \Vert Pf\Vert _{L^p(\pi (S,\delta ) {\setminus } \Omega )}^p \le C \Vert f\Vert _{L^p(\pi (S, 2\delta ) \cap \Omega )}^p. \end{aligned}$$

In fact we have

$$\begin{aligned} \int _{\pi (S,\delta ) {\setminus } \Omega } |Pf(y)|^p \, dy&\le C \int _{S' \times [0, \delta ]} |3f(z' - tn(z')) - 2f(z' - 2t n(z'))|^p \,dz'dt \\&\le C \int _{S' \times [0, \delta ]} \Big ( |f(z' - tn(z'))|^p + |f(z' - 2t n(z'))|^p \Big ) \,dz'dt \\&\le C \int _{\pi (S, \delta ) \cap \Omega } |f(y)|^p \,dy + C \int _{\pi (S, 2\delta ) \cap \Omega } |f(y)|^p \,dy. \end{aligned}$$

Next we show

$$\begin{aligned} \Vert \nabla Pf\Vert _{L^p(\pi (S,\delta ) {\setminus } \Omega )}^p \le C \Vert \nabla f\Vert _{L^p(\pi (S, 2\delta ) \cap \Omega )}^p. \end{aligned}$$
(A.1)

Since by the chain rule \(\nabla _y = \nabla _y(b\circ \pi )\nabla _{z'} + (\nabla _yd)\partial _t\) and since \(Pf(y) = 3f\circ \Psi (z', -t) - 2f\circ \Psi (z', -2t)\), it follows that

$$\begin{aligned} \nabla Pf(y)&= \nabla _y(b\circ \pi ) \Big ( 3\nabla _{z'}(f\circ \Psi )|_{(z',-t)} - 2\nabla _{z'}(f\circ \Psi )|_{(z',-2t)} \Big ) \nonumber \\&\qquad +\,\nabla _yd \Big ( -3\partial _t(f\circ \Psi )|_{(z',-t)} + 4\partial _t(f\circ \Psi )|_{(z',-2t)} \Big ), \quad y \in \pi (S,\delta ) {\setminus } \Omega . \end{aligned}$$
(A.2)

In particular, if \(y \in \Gamma \) i.e. \(t = 0\), then

$$\begin{aligned} \nabla Pf(y)= & {} \nabla _y(b\circ \pi ) \nabla _{z'}(f\circ \Psi )|_{(z',0)} + (\nabla _yd) \partial _t(f\circ \Psi )|_{(z', 0)}\\= & {} J^{-1}(z', 0) J(z', 0)\nabla _yf(y) = \nabla f(y), \end{aligned}$$

which ensures that \(Pf(y) \in W^{2, p}(\pi (S, \delta ))\). Now, noting that \(\nabla _y { \left( {\begin{matrix} b\circ \pi \\ d \end{matrix}}\right) } = J^{-1}(z', t)\) and that \(\nabla _{(z', t)}(f\circ \Psi )|_{(z', -it)} = J(z', -it) (\nabla _y f)|_{\Psi (z', -it)} \, (i=1,2)\) where J and \(J^{-1}\) depend on the \(C^{1,1}\)-regularity of \(\Omega \), we deduce that

$$\begin{aligned} \int _{\pi (S,\delta ) {\setminus } \Omega } |\nabla Pf(y)|^p \, dy \le C \int _{S'\times [0, \delta ]} \Big ( \big | (\nabla _yf)|_{\Psi (z', -t)} \big |^p + \big | (\nabla _yf)|_{\Psi (z', -2t)} \big |^p \Big ) \, dz'dt, \end{aligned}$$

from which (A.1) follows.

Finally we show

$$\begin{aligned} \Vert \nabla ^2 Pf\Vert _{L^p(\pi (S,\delta ) {\setminus } \Omega )}^p \le C (\Vert \nabla ^2 f\Vert _{L^p(\pi (S, 2\delta ) \cap \Omega )}^p + \Vert \nabla f\Vert _{L^p(\pi (S, 2\delta ) \cap \Omega )}^p). \end{aligned}$$
(A.3)

By differentiating (A.2) we find that for \(y \in \pi (S, \delta ) {\setminus } \Omega \)

$$\begin{aligned} \nabla ^2Pf(y) = \sum _{i=1}^2 \Big ( A_i(z', t) \nabla _{(z', t)}^2(f\circ \Psi )_{(z', -it)} + B_i(z', t) \nabla _{(z', t)}(f\circ \Psi )_{(z', -it)} \Big ), \end{aligned}$$

where the coefficient tensors \(A_i, B_i\) depend on the \(C^{1,1}\)-regularity of \(\Omega \). Then the \(L^p\)-norm of the above quantity can be estimated similarly as before and one obtains (A.3).

Adding up the above estimates for \(S \in \mathcal {S}_h\) deduces the desired stability properties. \(\square \)

We also need local stability of the extension operator as follows.

Corollary A.1

For a measurable set \(D \subset \mathbb {R}^N\) and \(\delta = C_{0E}h^2\) we have

$$\begin{aligned} \Vert Pf\Vert _{W^{k, \infty }(\Gamma (\delta ) \cap D)} \le C\Vert f\Vert _{W^{k, \infty }(\Omega \cap \Gamma (2\delta ) \cap D_{3\delta })} \quad (k=0,1,2), \end{aligned}$$

where \(D_{3\delta } = \{x\in \mathbb {R}^N{:}\, {\text {dist}}(x, D) \le 3\delta \}\) and C is independent of \(\delta \), f, and D.

Proof

We address the \(L^\infty \)-norm of \(\nabla Pf\); the treatment of Pf and \(\nabla ^2Pf\) is similar. For each \(S \in \mathcal {S}_h\), we find from the analysis of Theorem that \(\nabla Pf(y)\) for \(y \in \pi (S, \delta ) {\setminus } \Omega \) can be expressed as

$$\begin{aligned} \nabla Pf(y) = \sum _{i=1}^2 A_i(z', t) (\nabla _yf)|_{\Psi (z', -it)}, \end{aligned}$$

where the matrices \(A_i\) depend on the \(C^{0,1}\)-regularity of \(\Omega \). Then the desired estimate follows from the observation that if \(y = \Psi (z', t) \in \pi (S, \delta ) \cap D {\setminus } \Omega \) then \(\Psi (z', -it) \in \pi (S, i\delta ) \cap D_{3\delta } \cap \Omega \) for \(i=1,2\). \(\square \)

Appendix B: Analysis of regularized Green’s functions

1.1 Estimates for \(\tilde{g}\)

Recall that for arbitrarily fixed \(x_0 \in \Omega _h\) we have introduced \(\eta \in C_0^\infty (\Omega _h \cap \Omega )\) and \(g_m \in C^\infty (\overline{\Omega }) \, (m=0,1)\) in Sect. . Using the Green’s function G(xy) for the operator \(-\,\Delta + 1\) in \(\Omega \) with the homogeneous Neumann boundary condition, one can represent \(g_m\) as

$$\begin{aligned} g_0(x) = \int _{{\text {supp}}\eta } G(x, y)\eta (y) \, dy, \quad g_1(x) = -\int _{{\text {supp}}\eta } \partial _yG(x, y)\eta (y) \, dy, \quad x \in \Omega . \end{aligned}$$

The following derivative estimates for G are well known (see e.g. [13, p. 965]):

$$\begin{aligned} |\nabla _x^k \nabla _y^l G(x, y)| \le {\left\{ \begin{array}{ll} C(1 + |x - y|^{2 - l - k - N}) &{}\quad (l+k+N > 2), \\ C(1 + \big |\log |x - y|\big |) &{}\quad (N=2, l=k=0). \end{array}\right. } \end{aligned}$$

From this, combined with a dyadic decomposition of \(\Omega \), we derive some local and global estimates for \(g_m\) and its extension \(\tilde{g}_m := Pg_m\). Below the subscript m will be dropped for simplicity.

Lemma B.1

Let \(\mathcal {A}_{\Omega _h}(x_0, d_0) = \{\Omega _h \cap A_j\}_{j=0}^J\) be a dyadic decomposition of \(\Omega _h\) with \(d_0 \in [4h, 1]\). Then, for \(j=1, \dots , J\) and \(k\ge 0\) we have

$$\begin{aligned} \Vert \nabla ^k g\Vert _{L^\infty (\Omega \cap A_j)} \le {\left\{ \begin{array}{ll} C(1 + d_j^{2-m-k-N}) &{}\quad (m+k+N>2), \\ C(1 + |\log d_j|) &{}\quad (N=2, m=k=0), \end{array}\right. } \end{aligned}$$

where C is independent of \(x_0, d_0, h, j\), and \(\partial \).

Proof

We only consider \(m+k+N>2\) because the other case can be treated similarly. Notice that if \(x \in \Omega \cap A_j \, (j\ge 1)\) and \(y \in {\text {supp}}\eta \) then \(|x - y| \ge \frac{3}{4} d_{j-1}\), which is obtained from \(|x - x_0| \ge d_{j-1}\) and \(|y - x_0|\le h\). It then follows that

$$\begin{aligned} \Vert \nabla ^k g\Vert _{L^\infty (\Omega \cap A_j)}&= \sup _{x\in \Omega \cap A_j} \left| \int _{{\text {supp}} \eta } \partial _y^m \nabla _x^kG(x, y) \eta (y) \, dy \right| \\&\le \sup _{|x - y|\ge \frac{3}{4} d_{j-1} |\partial _y^m\nabla _x^kG(x, y)|}\\&\le C(1 + d_j^{2-m-k-N}), \end{aligned}$$

which completes the proof. \(\square \)

We transfer these estimates in \(\Omega \) to those in \(\tilde{\Omega }= \Omega \cup \Gamma (\delta )\) using an extension operator and its stability.

Lemma B.2

Let \(\mathcal {A}_{\Omega _h}(x_0, d_0) = \{\Omega _h \cap A_j\}_{j=0}^J\) be a dyadic decomposition of \(\Omega _h\) with \(d_0 \in [h, 1]\), \(\delta = C_{0E}h^2\). For \(p \in [1,\infty ]\), \(j = 1, \dots , J\), and \(m = 0,1\), we have

$$\begin{aligned} \Vert \nabla ^2 \tilde{g}\Vert _{L^p(\tilde{\Omega }\cap A_j)} \le Cd_j^{-m-N/p'}, \end{aligned}$$

where \(p' = p/(p-1)\) and C is independent of \(x_0, d_0, h, j\), and \(\partial \).

Proof

By the Hölder inequality and Lemma we see that

$$\begin{aligned} \Vert \nabla ^2 \tilde{g}\Vert _{L^p(\tilde{\Omega }\cap A_j)}&\le C |\Omega _h \cap A_j|^{1/p} \Vert \nabla ^2 \tilde{g}\Vert _{L^\infty (\tilde{\Omega }\cap A_j)} \le Cd_j^{N/p} \Vert g\Vert _{W^{2, \infty }(\Omega \cap A_j^{(1/4)})} \\&\le Cd_j^{N/p} (1 + d_j^{2-m-N} + d_j^{1-m-N} + d_j^{-m-N}) \le Cd_j^{-m-N/p'}, \end{aligned}$$

where we have used \(d_j \le 2 {\text {diam}}\,\Omega \) in the last inequality. \(\square \)

We also need local estimates in intersections of annuli and boundary-skins (or boundaries).

Lemma B.3

Under the assumptions in Lemma , let \(k=0,1,2\). Then we have

$$\begin{aligned} \Vert \nabla ^k \tilde{g}\Vert _{L^p(\Gamma (\delta ) \cap A_j)}&\le C (\delta d_j^{N-1})^{1/p} (1 + d_j^{2 - m - k - N}), \\ \Vert \nabla ^k g\Vert _{L^p(\Gamma \cap A_j)} + \Vert \nabla ^k \tilde{g}\Vert _{L^p(\Gamma _h \cap A_j)}&\le C d_j^{(N-1)/p} (1 + d_j^{2 - m - k - N}), \end{aligned}$$

provided \(m+k+N > 2\). Even when \(N=2\) and \(m=k=0\), the above estimates hold with the factor \(d_j^{2-m-k-N}\) replaced by \(|\log d_j|\). The constants C are independent of \(x_0, d_0, h, j\), and \(\partial \).

Proof

We only consider \(m+k+N > 2\) since the other case may be treated similarly. From Corollary and Lemma we deduce that (note that \((A_j)_{3\delta } \subset A_j^{(1/4)}\) for small h)

$$\begin{aligned} \Vert \nabla ^k \tilde{g}\Vert _{L^p(\Gamma (\delta ) \cap A_j)}&\le |\Gamma (\delta ) \cap A_j|^{1/p} \Vert \nabla ^k \tilde{g}\Vert _{L^\infty (\Gamma (\delta ) \cap A_j)} \\&\le C(\delta d_j^{N-1})^{1/p} \Vert g\Vert _{W^{k,\infty }(\Omega \cap \Gamma (2\delta ) \cap A_j^{(1/4)})} \\&\le C(\delta d_j^{N-1})^{1/p} (1 + d_j^{2-m-k-N}), \end{aligned}$$

where we have used \(d_j \le 2 {\text {diam}}\,\Omega \) in the second line. Similarly,

$$\begin{aligned} \Vert \nabla ^k \tilde{g}\Vert _{L^p(\Gamma _h \cap A_j)}&\le |\Gamma _h \cap A_j|^{1/p} \Vert \nabla ^k \tilde{g}\Vert _{L^\infty (\Gamma _h \cap A_j)} \\&\le Cd_j^{(N-1)/p} \Vert g\Vert _{W^{k,\infty }(\Omega \cap \Gamma (2\delta ) \cap A_j^{(1/4)})} \\&\le Cd_j^{(N-1)/p}(1 + d_j^{2-m-k-N}). \end{aligned}$$

One sees that \(\Vert \nabla ^k g\Vert _{L^p(\Gamma \cap A_j)}\) obeys the same estimate. \(\square \)

Remark B.1

The three lemmas above remain true with \(A_j\) replaced by \(A_j^{(s)} (0\le s < 1)\), where the constants C become dependent on the choice of s.

Especially when \(p=1\), the following global estimate in a boundary-skin layer holds.

Corollary B.1

Let \(\delta = C_{0E}h^2\) with sufficiently small h. Then we have

$$\begin{aligned}&\Vert \tilde{g}_0\Vert _{W^{k, 1}(\Gamma (\delta ))} \le {\left\{ \begin{array}{ll} C\delta &{}\quad (k=0), \\ C\delta |\log h| &{}\quad (k=1), \\ C\delta h^{-1} &{}\quad (k=2), \end{array}\right. }\\&\Vert \nabla ^k g_0\Vert _{L^1(\Gamma )} + \Vert \nabla ^k \tilde{g}_0\Vert _{L^1(\Gamma _h)} \le {\left\{ \begin{array}{ll} C &{}\quad (k=0), \\ C|\log h| &{}\quad (k=1), \\ Ch^{-1} &{}\quad (k=2), \end{array}\right. } \end{aligned}$$

and

$$\begin{aligned}&\Vert \tilde{g}_1\Vert _{W^{k, 1}(\Gamma (\delta ))} \le {\left\{ \begin{array}{ll} C\delta |\log h| &{}\quad (k=0), \\ C\delta h^{-1} &{}\quad (k=1), \\ C\delta h^{-2} &{}\quad (k=2), \end{array}\right. }\\&\Vert \nabla ^k g_1\Vert _{L^1(\Gamma )} + \Vert \nabla ^k \tilde{g}_1\Vert _{L^1(\Gamma _h)} \le {\left\{ \begin{array}{ll} C|\log h| &{}\quad (k=0), \\ Ch^{-1} &{}\quad (k=1), \\ Ch^{-2} &{}\quad (k=2), \end{array}\right. } \end{aligned}$$

where C is independent of \(x_0, h\), and \(\partial \).

Proof

We only consider the estimates in \(W^{k,1}(\Gamma (\delta ))\) because the boundary estimates can be derived similarly. With a dyadic decomposition \(\mathcal {A}_{\Omega _h}(x_0, 4h) = \{\Omega _h \cap A_j\}_{j=0}^J\), we compute \(\sum _{j=0}^J \Vert \tilde{g}\Vert _{W^{k,1}(\Gamma (\delta ) \cap A_j)}\). When \(j \ge 1\), it follows from Lemma that

$$\begin{aligned} \Vert \tilde{g}\Vert _{W^{k, 1}(\Gamma (\delta ) \cap A_j)} \le {\left\{ \begin{array}{ll} C(\delta d_j^{N-1}) d_j^{2-m-k-N} &{}\quad (m+k+N>2), \\ C(\delta d_j^{N-1}) |\log d_j| &{}\quad (N=2, m=k=0). \end{array}\right. } \end{aligned}$$
(B.1)

When \(j = 0\), notice that \({\text {dist}}({\text {supp}} \eta , \Gamma (2\delta )) \ge Ch = \frac{C}{4} d_0\) for sufficiently small h, which results from (3.1). Then, calculating in the same way as above, we find that (B.1) holds for \(j=0\) as well. Adding up the above estimate for \(j = 0, \dots , J\) and using (2.5), we obtain the desired result. \(\square \)

Remark B.2

We could improve the above estimates for \(g_0\) when \(k=1\) if the Dirichlet boundary condition were considered. In fact, the Green’s function \(G_D(x, y)\) in this case is known to satisfy \(|\nabla _x G_D(x, y)| \le C{\text {dist}}(y, \partial \Omega ) |x - y|^{-N}\) (see [10, Theorem 3.3(v)]). Then, taking a dyadic decomposition with \(d_0 = {\text {dist}}( {\text {supp}}\eta , \partial \Omega ) \ge Ch\), we see that

$$\begin{aligned} \Vert \nabla \tilde{g}_0\Vert _{L^1(\Gamma _h)}\le & {} C\sum _{j=0}^J d_j^{N-1} \Vert \nabla \tilde{g}_0\Vert _{L^\infty (\Gamma _h \cap A_j)}\\\le & {} C {\text {dist}}( {\text {supp}}\eta , \partial \Omega ) \sum _{j=0}^J d_j^{-1} \nonumber \\\le & {} Cd_0 d_0^{-1} = C, \end{aligned}$$

and that \(\Vert \nabla \tilde{g}_0\Vert _{L^1(\Gamma (\delta ))} \le C\delta \). However, such an auxiliary Green’s function estimate is not available in the case of the Neumann boundary condition. A similar inequality is proved in [17, eq. (5.8)] by a different method using the maximum principle, but its extension to the Neumann case seems non-trivial.

1.2 Estimates for \(\tilde{w}\)

Let us recall the situation of Sect. : fixing a dyadic decomposition \(\mathcal {A}_{\Omega _h}(x_0, d_0)\) and an annulus \(A_j \, (0\le j\le J)\), we have introduced the solution \(w \in C^\infty (\overline{\Omega })\) of (5.2) for arbitrary \(\varphi \in C_0^\infty (\Omega _h \cap A_j)\) such that \(\Vert \varphi \Vert _{L^2(\Omega _h \cap A_j)} = 1\). Hence w is represented, using the Green’s function G(xy), as

$$\begin{aligned} w(x) = \int _{\Omega \cap \Omega _h \cap A_j} G(x, y) \varphi (y) \, dy \quad (x \in \Omega ). \end{aligned}$$

Then we obtain the following local \(L^\infty \)-estimates away from \(A_j\):

Lemma B.4

For \(k=0,1,2\) and \(\delta = C_{0E}h^2\), we have

$$\begin{aligned} \Vert \tilde{w}\Vert _{W^{k,\infty }(\tilde{\Omega }{\setminus } A_j^{(1/2)})} \le {\left\{ \begin{array}{ll} Cd_j^{2-k-N/2} &{}\quad (N+k>2), \\ Cd_j (1+|\log d_j|) &{}\quad (N=2, k=0), \end{array}\right. } \end{aligned}$$

where \(\tilde{\Omega }:= \Omega \cup \Gamma (\delta )\), \(\tilde{w} := Pw\), and C is independent of \(h,x_0,d_0\), and j.

Proof

We focus on the case \(N+k>2\); the other case is similar. We find that

$$\begin{aligned}&\Vert \tilde{w}\Vert _{W^{k,\infty }(\tilde{\Omega }{\setminus } A_j^{(1/2)})}\\&\quad \le C\Vert w\Vert _{W^{k,\infty }(\Omega {\setminus } A_j^{(1/4)})} = C\sum _{l=0}^k \sup _{x \in \Omega {\setminus } A_j^{(1/4)}} \left| \int _{\Omega \cap \Omega _h \cap A_j} \nabla _x^l G(x, y) \varphi (y) \, dy \right| \\&\quad \le C \sum _{l=0}^k |\Omega \cap \Omega _h \cap A_j|^{1/2} \sup _{|x - y| \ge d_{j-1}/8} |\nabla _x^l G(x, y)| \, \Vert \varphi \Vert _{L^2(\Omega \cap \Omega _h \cap A_j)} \\&\quad \le Cd_j^{N/2} \left( 1 + d_j^{2-N} + \cdots + d_j^{2-k-N}\right) \le Cd_j^{2-k-N/2}, \end{aligned}$$

where we have used \(d_j \le 2 {\text {diam}}\,\Omega \) in the last inequality. \(\square \)

Remark B.3

The lemma remains true with \(A_j^{(1/2)}\) replaced by \(A_j^{(s)} \, (0<s\le 1)\), where the constant C becomes dependent on the choice of s.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashiwabara, T., Kemmochi, T. Pointwise error estimates of linear finite element method for Neumann boundary value problems in a smooth domain. Numer. Math. 144, 553–584 (2020). https://doi.org/10.1007/s00211-019-01098-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-019-01098-8

Mathematics Subject Classification

Navigation