Skip to main content

Advertisement

Log in

3′-sialyllactose targets cell surface protein, SIGLEC-3, and induces megakaryocyte differentiation and apoptosis by lipid raft-dependent endocytosis

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

3′-sialyllactose is one of the abundant components in human milk oligosaccharides (HMOs) that protect infants from various viral infections in early stages of immune system development. 3SL is a combination of lactose and sialic acid. Most sialic acids are widely expressed in animal cells and they bind to siglec proteins. In this study, we demonstrate that 3SL specifically binds to CD33. It induces megakaryocyte differentiation and subsequent apoptosis by targeting cell surface protein siglec-3 (CD33) in human chronic myeloid leukemia K562 cells. The 3SL-bound CD33 was internalized to the cytosol via caveolae-dependent endocytosis. At the molecular level, 3SL-bound CD33 recruits the suppressor of cytokine signaling 3 (SOCS3) and SH2 domain-containing protein tyrosine phosphatase 1 (SHP1). SOCS3 is degraded with CD33 by proteasome degradation, while SHP-1 activates extracellular signal–regulated kinase (ERK) to induce megakaryocytic differentiation and subsequent apoptosis. The present study, therefore, suggests that 3SL is a potential anti-leukemia agent affecting differentiation and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bruggencate, S.J., Bovee-Oudenhoven, I.M., Feitsma, A.L., van Hoffen, E., Schoterman, M.H.: Functional role and mechanisms of sialyllactose and other sialylated milk oligosaccharides. Nutr. Rev. 72, 377–389 (2014)

    PubMed  Google Scholar 

  2. Duncan, P.I., Raymond, F., Fuerholz, A., Sprenger, N.: Sialic acid utilisation and synthesis in the neonatal rat revisited. PLoS One. 4, e8241 (2009)

    PubMed  PubMed Central  Google Scholar 

  3. Sprenger, N., Duncan, P.I.: Sialic acid utilization. Adv. Nutr. 3, 392S–397S (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Vidal, K., van den Broek, P., Lorget, F.: Osteoprotegerin in human milk: a potentialrole in the regulation of bone metabolism and immune development. Pediatr. Res. 55, 1001–1008 (2004)

    CAS  PubMed  Google Scholar 

  5. Jeon, J., Kang, L.J., Lee, K.M., Cho, C., Song, E.K., Kim, W., et al.: 3'-Sialyllactose protects against osteoarthritic development by facilitating cartilage homeostasis. Cell Mol. Med. 22, 57–66 (2018)

    CAS  Google Scholar 

  6. Maru, I., Ohta, Y., Okamoto, K., Suzuki, S., Kakehi, K., Tsukada, Y.: Synthesis of Sialyllactose from N-Acetylneuraminic acid and lactose by a neuraminidase from Arthrobacter ureafaciens. Biosci. Biotechnol. Biochem. 56(1557–1561), (1992)

    CAS  Google Scholar 

  7. Boehm, G., Stahl, B.: Oligosaccharides from milk. J. Nutr. 137, 847S–849S (2007)

    CAS  PubMed  Google Scholar 

  8. Chung, T.W., Kim, E.Y., Kim, S.J., Choi, H.J., Jang, S.B., Kim, K.J., Ha, S.H., Abekura, F., Kwak, C.H., Kim, C.H., Ha, K.T.: Sialyllactose suppresses angiogenesis by inhibiting VEGFR-2 activation, and tumor progression. Oncotarget. 8, 58152–58162 (2017)

    PubMed  PubMed Central  Google Scholar 

  9. Choi, H., Jin, U.H., Kang, S.K., Abekura, F., Park, J.Y., Kwon, K.M., Suh, S.J., Cho, S.H., Ha, K.T., Lee, Y.C., Chung, T.W., Kim, C.H.: Monosialyl Ganglioside GM3 decreases Apolipoprotein B-100 secretion in liver cells. J. Cell. Biochem. 118, 2168–2181 (2017)

    CAS  PubMed  Google Scholar 

  10. Chung, T.W., Kim, S.J., Choi, H.J., Kim, K.J., Kim, M.J., Kim, S.H., Lee, H.J., Ko, J.H., Lee, Y.C., Suzuki, A., Kim, C.H.: Ganglioside GM3 inhibits VEGF/VEGFR-2-mediated angiogenesis: direct interaction of GM3 with VEGFR-2. Glycobiology. 19, 229–239 (2009)

    CAS  PubMed  Google Scholar 

  11. Kim, S.J., Chung, T.W., Choi, H.J., Jin, U.H., Ha, K.T., Lee, Y.C., Kim, C.H.: Monosialic ganglioside GM3 specifically suppresses the monocyte adhesion to endothelial cells for inflammation. Int. J. Biochem. Cell Biol. 46, 32–38 (2014)

    CAS  PubMed  Google Scholar 

  12. Ha, S.H., Kang, S.K., Choi, H., Kwak, C.H., Abekura, F., Park, J.Y., Kwon, K.M., Chang, H.W., Lee, Y.C., Ha, K.T., Hou, B.K., Chung, T.W., Kim, C.H.: Induction of GD3/α1-adrenergic receptor/transglutaminase 2-mediated erythroid differentiation in chronic myelogenous leukemic K562 cells. Oncotarget. 8, 72205–72219 (2017)

    PubMed  PubMed Central  Google Scholar 

  13. Markowska, A.I., Liu, F.T., Panjwani, N.: Galectin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response. J. Exp. Med. 207, 1981–1993 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chung, T.W., Choi, H.J., Kim, S.J., Kwak, C.H., Song, K.H., Jin, U.H., et al.: The ganglioside GM3 is associated with cisplatin-induced apoptosis in human colon cancer cells. PLoS One. 9, e92786 (2014)

    PubMed  PubMed Central  Google Scholar 

  15. Choi, H.J., Chung, T.W., Kim, S.J., Cho, S.Y., Lee, Y.S., Lee, Y.C., Ko, J.H., Kim, C.H.: The AP-2alpha transcription factor is required for the ganglioside GM3-stimulated transcriptional regulation of a PTEN gene. Glycobiology. 18, 395–407 (2008)

    CAS  PubMed  Google Scholar 

  16. Sohn, H., Kim, Y.S., Kim, H.T., Kim, C.H., Cho, E.W., Kang, H.Y., Kim, N.S., Kim, C.H., Ryu, S.E., Lee, J.H., Ko, J.H.: Ganglioside GM3 is involved in neuronal cell death. FASEB J. 20, 1248–1250 (2006)

    CAS  PubMed  Google Scholar 

  17. Choi, H.J., Chung, T.W., Kang, S.K., Lee, Y.C., Ko, J.H., Kim, J.G., Kim, C.H.: Ganglioside GM3 modulates tumor suppressor PTEN-mediated cell cycle progression--transcriptional induction of p21(WAF1) and p27(kip1) by inhibition of PI-3K/AKT pathway. Glycobiology. 16, 573–583 (2006)

    CAS  PubMed  Google Scholar 

  18. Nguyen, D.H., Ball, E.D., Varki, A.: Myeloid precursors and acute myeloid leukemia cells express multiple CD33-related Siglecs. Exp. Hematol. 34, 728–735 (2006)

    CAS  PubMed  Google Scholar 

  19. Vivier, E., Daeron, M.: Immunoreceptor tyrosine-based inhibition motifs. Immunol. Today. 18, 286–291 (1997)

    CAS  PubMed  Google Scholar 

  20. Ulyanova, T., Blasioli, J., Woodford-Thomas, T.A., Thomas, M.L.: The sialoadhesin CD33 is a myeloid-specific inhibitory receptor. Eur. J. Immunol. 29, 3440–3449 (1999)

    CAS  PubMed  Google Scholar 

  21. Taylor, V.C., Buckley, C.D., Douglas, M., Cody, A.J., Simmons, D.L., Freeman, S.D.: The myeloid-specific sialic acid-binding receptor, CD33, associates with the protein-tyrosine phosphatases, SHP-1 and SHP-2. J. Biol. Chem. 274, 11505–11512 (1999)

    CAS  PubMed  Google Scholar 

  22. Orr, S.J., Morgan, N.M., Elliott, J., Burrows, J.F., Scott, C.J., McVicar, D.W., Johnston, J.A.: CD33 responses are blocked by SOCS3 through accelerated proteasomal-mediated turnover. Blood. 109, 1061–1068 (2007)

    CAS  PubMed  Google Scholar 

  23. Chong, Z.Z., Maiese, K.: The Src homology 2 domain tyrosine phosphatases SHP-1 and SHP-2: diversified control of cell growth, inflammation, and injury. Histol. Histopathol. 22, 1251–1267 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Balaian, L., Zhong, R.K., Ball, E.D.: The inhibitory effect of anti-CD33 monoclonal antibodies on AML cell growth correlates with Syk and/or ZAP-70 expression. Exp. Hematol. 5, 363–371 (2003)

    Google Scholar 

  25. Bütler, T.M., Ziemiecki, A., Friis, R.R.: Megakaryocytic differentiation of K562 cells is associated with changes in the cytoskeletal organization and the pattern of chromatographically distinct forms of phosphotyrosyl-specific protein phosphatases. Cancer Res. 50, 6323–6329 (1990)

    PubMed  Google Scholar 

  26. Jacquel, A., Herrant, M., Defamie, V., Belhacene, N., Colosetti, P., Marchetti, S., Legros, L., Deckert, M., Mari, B., Cassuto, J.P., Hofman, P., Auberger, P.: A survey of the signaling pathways involved in megakaryocytic differentiation of the human K562 leukemia cell line by molecular and c-DNA array analysis. Oncogene. 25, 781–794 (2006)

    CAS  PubMed  Google Scholar 

  27. Nakamura, M., Kirito, K., Yamanoi, J., Wainai, T., Nojiri, H., Saito, M.: Ganglioside GM3 can induce megakaryocytoid differentiation of human leukemia cell line K562 cells. Cancer Res. 51, 1940–1945 (1991)

    CAS  PubMed  Google Scholar 

  28. Ouyang, L., Shi, Z., Zhao, S., Wang, F.T., Zhou, T.T., Liu, et al.: Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 45, 487–498 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Soldani, C., Scovassi, A.I.: Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis. 7, 321–328 (2002)

    CAS  PubMed  Google Scholar 

  30. Chou, C.C., Yung, B.Y., Hsu, C.Y.: Involvement of nPKC-MAPK pathway in the decrease of nucleophosmin/B23 during megakaryocytic differentiation of human myelogenous leukemia K562 cells. Life Sci. 80, 2051–2059 (2007)

    CAS  PubMed  Google Scholar 

  31. Zhang, H., Tan, S., Wang, J., Chen, S., Quan, J., Xian, J., Zhang, S.S., He, J., Zhang, L.: Musashi2 modulates K562 leukemic cell proliferation and apoptosis involving the MAPK pathway. Exp. Cell Res. 320, 119–127 (2014)

    CAS  PubMed  Google Scholar 

  32. Conde, I., Pabón, D., Jayo, A., Lastres, P., González-Manchón, C.: Involvement of ERK1/2, p38 and PI3K in megakaryocytic differentiation of K562 cells. Eur. J. Haematol. 84, 430–440 (2010)

    CAS  PubMed  Google Scholar 

  33. Mebratu, Y., Tesfaigzi, Y.: How ERK1/2 activation controls cell proliferation and cell death: is subcellular localization the answer? Cell Cycle. 8, 1168–1175 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Pratsinis, H., Papadopoulou, A., Neidlinger-Wilke, C., Brayda-Bruno, M., Wilke, H.J., Kletsas, D.: Cyclic tensile stress of human annulus fibrosus cells induces MAPK activation: involvement in proinflammatory gene expression. Osteoarthr. Cartil. 24, 679–687 (2016)

    CAS  PubMed  Google Scholar 

  35. Hernández-Caselles, T., Martínez-Esparza, M., Pérez-Oliva, A.B., Quintanilla-Cecconi, A.M., García-Alonso, A., Alvarez-López, D.M., García-Peñarrubia, P.: A study of CD33 (SIGLEC-3) antigen expression and function on activated human T and NK cells: two isoforms of CD33 are generated by alternative splicing. J. Leukoc. Biol. 79, 46–58 (2006)

    PubMed  Google Scholar 

  36. Walter, R.B., Raden, B.W., Kamikura, D.M., Cooper, J.A., Bernstein, I.D.: Influence of CD33 expression levels and ITIM-dependent internalization on gemtuzumab ozogamicin-induced cytotoxicity. Blood. 105, 1295–1302 (2005)

    CAS  PubMed  Google Scholar 

  37. Griciuc, A., Serrano-Pozo, A., Parrado, A.R., Lesinski, A.N., Asselin, C.N., Mullin, K., Hooli, B., Choi, S.H., Hyman, B.T., Tanzi, R.E.: Alzheimer's disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron. 78, 631–643 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Khan, N.A., Meyneil, J.P., Deschaux, P.: Ca2+/calmodulin and protein kinase C regulation of serotonin transport in human K562 lymphocytes. Cell. Immunol. 172, 269–274 (1996)

    CAS  PubMed  Google Scholar 

  39. Wang, B., Brand-Miller, J., McVeagh, P., Petocz, P., Am, J.: Concentration and distribution of sialic acid in human milk and infant formulas. Clin. Nutr. 74, 510–515 (2001)

    CAS  Google Scholar 

  40. Kovtun, Y., Noordhuis, P., Whiteman, K.R., Watkins, K., Jones, G.E., Harvey, L., Lai, K.C., Portwood, S., Adams, S., Sloss, C.M., Schuurhuis, G.J., Ossenkoppele, G., Wang, E.S., Pinkas, J.: IMGN779, a novel CD33-targeting antibody-drug conjugate with DNA alkylating activity, exhibits potent antitumor activity in models of AML. Mol Cancer Ther. 17, 1271–1279 (2018)

    CAS  PubMed  Google Scholar 

  41. Medeiros, B.C., Tanaka, T.N., Balaian, L., Bashey, A., Guzdar, A., Li, H., Messer, K., Ball, E.D.: A phase I/II trial of the combination of Azacitidine and Gemtuzumab Ozogamicin for treatment of relapsed acute myeloid leukemia. Clin. Lymphoma Myeloma Leuk. 18, 346–352 (2018)

    PubMed  Google Scholar 

  42. Khan, N., Hills, R.K., Virgo, P., Couzens, S., Clark, N., Gilkes, A., Richardson, P., Knapper, S., Grimwade, D., Russell, N.H., Burnett, A.K., Freeman, S.D.: Expression of CD33 is a predictive factor for effect of gemtuzumab ozogamicin at different doses in adult acute myeloid leukaemia. Leukemia. 31, 1059–1068 (2017)

    CAS  PubMed  Google Scholar 

  43. Rubnitz, J.E., Gibson, B., Smith, F.O.: Acute myeloid leukemia. Hematol. Oncol. Clin. North Am. 24, 35–63 (2010)

    PubMed  Google Scholar 

  44. Burnett, A., Wetzler, M., Löwenberg, B.: Therapeutic advances in acute myeloid leukemia. J. Clin. Oncol. 29, 487–494 (2011)

    PubMed  Google Scholar 

  45. Damle, N.K., Frost, P.: Antibody-targeted chemotherapy with immunoconjugates of calicheamicin. Curr. Opin. Pharmacol. 3, 386–390 (2003)

    CAS  PubMed  Google Scholar 

  46. Pagano, L., Fianchi, L., Caira, M., Rutella, S., Leone, G.: The role of Gemtuzumab Ozogamicin in the treatment of acute myeloid leukemia patients. Oncogene. 26, 3679–3690 (2007)

    CAS  PubMed  Google Scholar 

  47. Laszlo, G.S., Estey, E.H., Walter, R.B.: The past and future of CD33 as therapeutic target in acute myeloid leukemia. Blood Rev. 28, 143–153 (2014)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study has been in part supported by the Basic Science Research Program through National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (MEST) of Korea (NRF-2015R1D1A1A01057153).

Author information

Authors and Affiliations

Authors

Contributions

S.H.H designed and performed most of experiments and wrote the manuscript. C.H.K (Choong-Hwan Kwak), J.Y.P, F.A performed experiments. Y.C.L, J.S.K, T.W.C and C.H.K (Cheorl-Ho Kim) contributed reagents/ materials/analysis tools, designed and supervised this paper.

Corresponding authors

Correspondence to Tae-Wook Chung or Cheorl-Ho Kim.

Ethics declarations

Conflict of interest

The authors did not declare any competing interests in this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, SH., Kwak, CH., Park, JY. et al. 3′-sialyllactose targets cell surface protein, SIGLEC-3, and induces megakaryocyte differentiation and apoptosis by lipid raft-dependent endocytosis. Glycoconj J 37, 187–200 (2020). https://doi.org/10.1007/s10719-019-09902-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-019-09902-1

Keywords

Navigation