Skip to main content
Log in

Thermal expansion of the Al2SiO5 polymorphs, kyanite, andalusite and sillimanite, between 10 and 1573 K determined using time-of-flight neutron powder diffraction

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Powder and single-crystal diffraction data measured from the three geologically important Al2SiO5 polymorphs, kyanite, andalusite and sillimanite, over the last six decades have given varying accounts of each polymorph’s thermal expansion, the scatter between and even within experimental datasets often being quite large. Furthermore, there are no lattice parameter determinations below 273 K, where the thermodynamic functions vary substantially, and few measurements above 1200 K. Accurate and precise lattice parameters of natural kyanite, andalusite and sillimanite have therefore been obtained in the range 10–1573 K using the high-resolution powder diffractometer (HRPD) at the ISIS neutron spallation source. Accuracy is ensured by the use of an internal standard (NIST silicon SRM640c) and use of a bulk probe (neutrons) to avoid the specimen-displacement corrections required by typical back-reflection X-ray diffraction methods. Precision is ensured by use of the time-of-flight method on one of the longest primary neutron flightpath instruments in the world. For kyanite, the improved precision reveals the true temperature dependence of the three inter-axial angles for the first time, permitting derivation of accurate thermal expansion tensor coefficients. For both andalusite and sillimanite, the measurements reveal hitherto unknown regions of substantial negative linear expansivity below room temperature, along the c-axis in andalusite and along the a-axis in sillimanite. Above 1200 K, sillimanite exhibits an anomalous increase in thermal expansion that may be due to a change in the Al/Si tetrahedral site ordering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abdi H (2007) The eigen decomposition; eigenvalues and eigenvectors. In: Salkind NJ (ed) Encyclopedia of measurements and statistics. Sage Publications, Thousand Oaks

    Google Scholar 

  • Arnold O et al (2014) Mantid—Data analysis and visualization package for neutron scattering and µSR experiments. Nucl Instrum Methods Phys Res A 764:156–166

    Article  Google Scholar 

  • Barlett HB (1940) Rate of decomposition of kyanite at various temperatures. J Am Ceram Soc 23:249–251

    Article  Google Scholar 

  • Barnhart KR, Walsh PJ, Hollister LS, Daniel CG, Andronicos CL (2012) Decompression during late proterozoic Al2SiO5 triple-point metamorphism at Cerro Colorado, New Mexico. J Geol 120:385–404

    Article  Google Scholar 

  • Bertram UC, Heine V, Jones IL, Price GD (1990) Computer modelling of Al/Si ordering in sillimanite. Phys Chem Miner 17:326–333

    Article  Google Scholar 

  • Bish DL, Burnham CW (1992) Rietveld refinement of the crystal structure of fibrolitic sillimanite using neutron powder diffraction data. Am Mineral 77:374–379

    Google Scholar 

  • Brace WF, Schulz CH, La Mori PN (1969) Isothermal compressibility of kyanite, andalusite, and sillimanite from synthetic aggregates. J Geophys Res 74:2089–2098

    Article  Google Scholar 

  • Burnham CW (1963a) Refinement of the crystal structure of sillimanite. Z Krist 118:127–148

    Article  Google Scholar 

  • Burnham CW (1963b) Refinement of the crystal structure of kyanite. Z Krist 118:337–360

    Article  Google Scholar 

  • Burnham CW, Buerger MJ (1961) Refinement of the crystal structure of andalusite. Z Krist 115:269–290

    Article  Google Scholar 

  • Burt JB, Ross NL, Angel RJ, Koch M (2006) Equations of state and structures of andalusite to 9.8 GPa and sillimanite to 8.5 GPa. Am Mineral 91:319–326

    Article  Google Scholar 

  • Comodi P, Zanazzi PF, Poli S, Schmidt MW (1997) High-pressure behaviour of kyanite: compressibility and structural deformations. Am Mineral 82:452–459

    Article  Google Scholar 

  • Finger LW, Prince E (1972) Neutron diffraction studies: andalusite and sillimanite. Carnegie Inst Wash Year Book 71:496–500

    Google Scholar 

  • Fortes AD (2016) Thermal expansion of kyanite, andalusite and sillimanite, 1620003, STFC ISIS Facility. https://doi.org/10.5286/ISIS.E.83382292

  • Friedrich A, Kunz M, Winkler B, Le Bihan T (2004) High-pressure behaviour of sillimanite and kyanite: compressibility, decomposition and indications of a new high-pressure phase. Z Krist 219:324–329

    Google Scholar 

  • Gatta GD, Nestola F, Walter JM (2006) On the thermo-elastic behaviour of kyanite: a neutron powder diffraction study up to 1200 °C. Mineral Mag 70:309–317

    Article  Google Scholar 

  • Gatta GD, Rotitoti N, Zucali M (2009) Plastic deformation in kyanites by tectonometamorphic processes: a single-crystal X-ray diffraction study. Mineral Mag 73:359–371

    Article  Google Scholar 

  • Ghent ED (1976) Plagioclase-garnet-Al2SiO5-quartz: a potential geobarometer-geothermometer. Am Mineral 61:710–714

    Google Scholar 

  • Ghent ED, Grover TW (1995) Calculation of the activity of Al2SiO5; applications to the geobarometry and geohygrometry of garnet and staurolite zone metapelitic rocks. Am J Sci 295:923–942

    Article  Google Scholar 

  • Ghent ED, Knitter CC, Raeside RP, Stout MZ (1982) Geothermometry and geobarometry of pelitic rocks, upper kyanite and sillimanite zones, Mica Creek area, British Columbia. Can Mineral 20:295–305

    Google Scholar 

  • Greenwood HJ (1972) AlIV-SiIV disorder in sillimanite and its effect on phase relations of the aluminum silicate minerals. Mem Geol Soc Am 132:553–571

    Google Scholar 

  • Guse W, Saalfeld H, Tjandra J (1979) Thermal transformations of sillimanite single crystals. Neues Jahrb Min Monat 1979:175–181

    Google Scholar 

  • Hashash YMA, Yao JI-C, Wotring DC (2003) Glyph and hyperstreamline representation of stress and strain tensors and material constitutive response. Int J Num Anal Methods Geomech 27:604–626

    Article  Google Scholar 

  • Hazen RM, Downs RT, Prewitt CT (2000) Principles of comparative crystal chemistry. Rev Mineral Geochem 41:1–33

    Article  Google Scholar 

  • He Q, Liu X, Li B, Deng L, Liu W, Wang L (2016) Thermal equation of state of a natural kyanite up to 8.55 GPa and 1273 K. Matter Radiat Extrem 1:269–276

    Article  Google Scholar 

  • Hemingway BS, Robie RA, Evans HT, Kerrick DM (1991) Heat capacities and entropies of sillimanite, fibrolite, andalusite, kyanite, and quartz and the Al2SiO5 phase diagram. Am Mineral 76:1597–1613

    Google Scholar 

  • Holland TJB, Carpenter MA (1986) Aluminium/silicon disordering and melting in sillimanite at high pressures. Nature 320:151–153

    Article  Google Scholar 

  • Hu X, Liu X, He Q, Wang H, Qin S, Ren L, Wu CM, Chang L (2011) Thermal expansion of andalusite and sillimanite at ambient pressure: a powder X-ray diffraction study up to 1000 °C. Mineral Mag 75:363–374

    Article  Google Scholar 

  • Ibberson RM (2009) Design and performance of the new supermirror guide on HRPD at ISIS. Nucl Instr Methods Phys Res A 600:47–49

    Article  Google Scholar 

  • Ibberson RM, David WIF, Knight KS (1992) The high resolution neutron powder diffractometer (HRPD) at ISIS—a user guide. In: RAL-92-031. Rutherford Appleton Laboratory, UK

  • Igami T, Kuribayashi T, Miyake A (2018) Determination of Al/Si order in sillimanite by high angular resolution electron channeling X-ray spectroscopy, and implications for determining peak temperatures of sillimanite. Am Mineral 103:944–951

    Article  Google Scholar 

  • Iishi K, Salje E, Werneke C (1979) Phonon spectra and rigid-ion model calculations on andalusite. Phys Chem Min 4:173–188

    Article  Google Scholar 

  • Kaminski W (2004) WinTensor 1.1 http://cad4.cpac.washington.edu/WinTensorhome/WinTensor.htm. Accessed 9 Mar 2019

  • Kashcheev ID, Ust’yantsev VM, Sychev SN (2007) Kyanite concentrate of the Karabash deposit: phase transformations during heating. Refract Ind Ceram 48:250–254

    Article  Google Scholar 

  • Kerrick DM (1990) The Al2SiO5 polymorphs. Reviews in mineralogy 22, Mineralogical Society of America, Chantilly, Virginia

    Book  Google Scholar 

  • Koziol AM, Newton RC (1988) Redetermination of the anorthite breakdown reaction and improvement of the plagioclase–garnet–Al2SiO5–quartz geobarometer. Am Mineral 73:216–223

    Google Scholar 

  • Lafuente B, Downs RT, Yang H, Stone N (2015) The power of databases: the RRUFF project. In: Armbruster T, Danisi RM (eds) Highlights in mineralogical crystallography. W. De Gruyter, Berlin, pp 1–30

    Google Scholar 

  • Larson AC, Von Dreele RB (1994) General structure analysis system (GSAS), Los Alamos National Laboratory Report, LAUR, pp 86–748

  • Lefebvre A, Paquet J (1983) Dissociation of c dislocation in sillimanite Al2SiO5. Bull Minéral 106:287–292

    Article  Google Scholar 

  • Liu X, Shieh SR, Fleet ME, Zhang L (2009) Compressibility of a natural kyanite to 17.5 GPa. Progr Nat Sci 19:1281–1286

    Article  Google Scholar 

  • Liu X, He Q, Wang H, Fleet M, Hu X (2010) Thermal expansion of kyanite at ambient pressure: an X-ray powder diffraction study up to 1000 °C. Geosci Front 1:91–97

    Article  Google Scholar 

  • Mantid (2013) Manipulation and analysis toolkit for instrument data; Mantid Project. https://doi.org/10.5286/SOFTWARE/MANTID

  • Mernagh TP, Liu L (1991) Raman spectra from the Al2SiO5 polymorphs at high pressure and room temperature. Phys Chem Mineral 18:126–130

    Article  Google Scholar 

  • Neumann F (1925) Über die Stabilitätsverhältnisse der Modifikationen im polymorphen System Al2SiO5. Z Anorg Allgem Chem 145:193–238

    Article  Google Scholar 

  • Newton RC, Haselton HT (1981) Thermodynamics of the garnet–plagioclase–Al2SiO5–quartz geobarometer. Thermodynamics of minerals and melts. Springer, New York, pp 131–147

    Book  Google Scholar 

  • Oganov AR, Brodholt JB (2000) High-pressure phases in the Al2SiO5 system and the problem of aluminous phase in the Earth’s lower mantle: ab initio calculations. Phys Chem Min 27:430–439

    Article  Google Scholar 

  • Page YL, Saxe P (2002) Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys Rev B 65:104104

    Article  Google Scholar 

  • Pankratz LB, Kelley KK (1964) High temperature heat contents and entropies of andalusite, kyanite and sillimanite. US Bur Mines. Rep Invest 1964:6370

    Google Scholar 

  • Putz H, Brandenburg K (2006) Diamond—crystal and molecular structure visualization. Crystal Impact—GbR, Kreuzherrenstr. 102, 53227 Bonn, Germany. http://www.crystalimpact.com/diamond. Accessed 9 Mar 2019

  • Robie RA, Hemingway BS (1984) Entropies of kyanite, andalusite, and sillimanite: additional constraints on the pressure and temperature of the Al2SiO5 triple point. Am Mineral 69:298–306

    Google Scholar 

  • Rossman GR, Grew ES, Dollase WA (1982) The colors of sillimanite. Am Mineral 67:749–761

    Google Scholar 

  • Sainz MA, Serrano FJ, Bastída J, Caballero A (1997) Microstructural evolution and growth of crystallite size of mullite during thermal transformation of kyanite. J Eur Ceram Soc 17:1277–1284

    Article  Google Scholar 

  • Salje E (1986) Heat capacities and entropies of andalusite and sillimanite: the influence of fibrolitization on the phase diagram of the Al2SiO5 polymorphs. Am Mineral 71:1366–1371

    Google Scholar 

  • Salje E, Werneke C (1982) The phase equilibrium between sillimanite and andalusite as determined from lattice vibrations. Contrib Miner Petrol 79:56–67

    Article  Google Scholar 

  • Schmidt MW, Poli S, Comodi P, Zanazzi PF (1997) High-pressure behavior of kyanite: decomposition of kyanite into stishovite and corundum. Am Mineral 82:460–466

    Article  Google Scholar 

  • Schneider H (1979) Thermal expansion of andalusite. J Am Ceram Soc 62:307 (1 page article)

    Article  Google Scholar 

  • Skinner BJ, Clark SP, Appleman DE (1961) Molar volumes and thermal expansions of andalusite, kyanite and sillimanite. Am J Sci 259:651–668

    Article  Google Scholar 

  • Stebbins JF, Burnham CW, Bish DL (1993) Tetrahedral disorder in fibrolitic sillimanite: comparison of 29Si NMR and neutron diffraction data. Am Mineral 78:461–464

    Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Cryst 34:210–213

    Article  Google Scholar 

  • Tropper P, Hoinkes G (1996) Geothermobarometry of Al2SiO5-bearing metapelites in the western Austroalpine Ötztal-basement. Min Petrol 58:145–170

    Article  Google Scholar 

  • Vaughan MT, Weidner DJ (1978) The relationship of elasticity and crystal structure in andalusite and sillimanite. Phys Chem Min 3:133–144

    Article  Google Scholar 

  • Winkler B, Hytha M, Warren MC, Milman V, Gale JD, Schreuer J (2001) Calculation of the elastic constants of the Al2SiO5 polymorphs andalusite, sillimanite and kyanite. Z Krist 216:67–70

    Google Scholar 

  • Winter JK, Ghose S (1979) Thermal expansion and high-temperature crystal chemistry of the Al2SiO5 polymorphs. Am Mineral 64:573–586

    Google Scholar 

  • Yang H, Downs RT, Finger LW, Hazen RM, Prewitt CT (1997a) Compressibility and crystal structure of kyanite, Al2SiO5, at high pressure. Am Mineral 82:467–474

    Article  Google Scholar 

  • Yang H, Hazen RM, Finger LW, Prewitt CT, Downs RT (1997b) Compressibility and crystal structure of sillimanite, Al2SiO5, at high pressure. Phys Chem Min 25:39–47

    Article  Google Scholar 

  • Yao H, Ouyang L, Ching W-Y (2007) Ab initio calculation of elastic constants of ceramic crystals. J Am Ceram Soc 90:3194–3204

    Article  Google Scholar 

Download references

Acknowledgements

Neutron diffraction work was supported by a beam-time allocation from the STFC ISIS Facility (RB 1620003, https://doi.org/10.5286/ISIS.E.83382292). The author thanks Dr Andrew Beard (Birkbeck, University of London) for collection of microprobe measurements, and Paul McIntyre and Adam Sears (Rutherford Appleton Laboratory) for their assistance with the high-temperature portion of this work. G.D. Gatta and one anonymous referee are thanked for their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dominic Fortes.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1931 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fortes, A.D. Thermal expansion of the Al2SiO5 polymorphs, kyanite, andalusite and sillimanite, between 10 and 1573 K determined using time-of-flight neutron powder diffraction. Phys Chem Minerals 46, 687–704 (2019). https://doi.org/10.1007/s00269-019-01031-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-019-01031-3

Keywords

Navigation