Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: QoS and QoE Enhanced Resource Allocation for Wireless Video Sensor Networks Using Hybrid Optimization Algorithm

  • Published:
International Journal of Parallel Programming Aims and scope Submit manuscript

This article was retracted on 07 November 2022

This article has been updated

Abstract

Resource allocation has posed a challenging of scarce resources to activities over time. Problems of optimal resource allocation are motivated by questions that arise in project scheduling, production planning, computer control, broadcasting, routing data, maintenance scheduling, and etc. Data transmission in environmental, security, and health monitoring requires both quality of service (QoS) and quality of equipment (QoE) aware network in order to ensure efficient usage of the resources and effective access. In this paper, we propose a resource allocation scheme for wireless video sensor network using hybrid optimization (RAS-HO) algorithm. Firstly, the cluster formation is performed by the modified animal migration optimization algorithm, which enhances the energy consumption. Secondly, an efficient resource allocation is performed by a glowworm swarm optimization based decision making algorithm. Simulation results show that the proposed scheme achieves required resources better than existing schemes in terms of QoS metrics are energy efficient, delay fairness, throughput, and QoE metrics are peak signal to noise ratio, structural similarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Arjmandi, H., Lahouti, F.: Resource optimized distributed source coding for complexity constrained data gathering wireless sensor networks. IEEE Sens. J. 11(9), 2094–2101 (2011)

    Article  MATH  Google Scholar 

  2. Del Fiorentino, P., Vitiello, C., Lottici, V., Debels, E., Van Hecke, J., Moeneclaey, M., Giannetti, F., Luise, M.: Resource allocation in short packets BIC-UFMC transmission for internet of things. In: 2016 IEEE Globecom Workshops (GC Wkshps), 2016

  3. He, Zhihai, Dapeng, Wu: Resource allocation and performance analysis of wireless video sensors. IEEE Trans. Circuits Syst. Video Technol. 16(5), 590–599 (2006)

    Article  Google Scholar 

  4. Zou, J., Xiong, H., Li, C., Zhang, R., He, Z.: Lifetime and distortion optimization with joint source/channel rate adaptation and network coding-based error control in wireless video sensor networks. IEEE Trans. Veh. Technol. 60(3), 1182–1194 (2011)

    Article  Google Scholar 

  5. Li, C., Zou, J., Xiong, H., Chen, C.: Joint coding/routing optimization for distributed video sources in wireless visual sensor networks. IEEE Trans. Circuits Syst. Video Technol. 21(2), 141–155 (2011)

    Article  Google Scholar 

  6. Imran, M., Khursheed, K., Lawal, N., O’Nils, M., Ahmad, N.: Implementation of wireless vision sensor node for characterization of particles in fluids. IEEE Trans. Circuits Syst. Video Technol. 22(11), 1634–1643 (2012)

    Article  Google Scholar 

  7. Imran, M., Ahmad, N., Khursheed, K., Waheed, M., Lawal, N., O’Nils, M.: Implementation of wireless vision sensor node with a lightweight Bi-level video coding. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(2), 198–209 (2013)

    Article  Google Scholar 

  8. Lu, X., Wang, P., Niyato, D., Han, Z.: Resource allocation in wireless networks with RF energy harvesting and transfer. IEEE Netw. 29(6), 68–75 (2015)

    Article  Google Scholar 

  9. Loumiotis, I., Stamatiadi, T., Adamopoulou, E., Demestichas, K., Sykas, E.: Dynamic backhaul resource allocation in wireless networks using artificial neural networks. Electron. Lett. 49(8), 539–541 (2013)

    Article  Google Scholar 

  10. Peltomaki, M., Koljonen, J., Tirkkonen, O., Alava, M.: Algorithms for self-organized resource allocation in wireless networks. IEEE Trans. Veh. Technol. 61(1), 346–359 (2012)

    Article  Google Scholar 

  11. Rashvand, H.F., Salcedo, V.T.: Ubiquitous wireless telemedicine. IET Commun. 2(2), 237–254 (2008)

    Article  Google Scholar 

  12. Dowler, N., Hall, C.J.: Safety issues in telesurgery-summary. In: IEEE Colloquium on ‘Towards Telesugery’ (1995)

  13. Choi, Y.B., Krause, J.S.: Telemedicine in the USA: standardization through information management and technical applications. IEEE Commun. Mag. 44(4), 41–48 (2006)

    Article  Google Scholar 

  14. Istepanian, R.S., Jovanov, H.E.: Guest editorial introduction to the special section on M-Health: beyond seamless mobility and global wireless health-care connectivity. IEEE Trans. Inf. Technol. Biomed. 8(4), 405–414 (2004)

    Article  Google Scholar 

  15. Golmie, N., Cypher, D.: Performance analysis of low rate wireless technologies for medical applications. Comput. Commun. 28(10), 1266–1275 (2005)

    Article  Google Scholar 

  16. Sneha, S., Varshney, U.: Enabling ubiquitous patient monitoring: model, decision protocols, opportunities and challenges. Decis. Support Syst. 46(3), 606–619 (2009)

    Article  Google Scholar 

  17. Vergados, D.J., Vergados, D.D.: NGL03-6: applying wireless diffserv for QoS provisioning in mobile emergency telemedicine. In: IEEE Global Telecommunications Conference (2006)

  18. Cypher, D., Chevrollier, N.: Prevailing over wires in healthcare environments: benefits and challenges. IEEE Commun. Mag. 44(4), 56–63 (2006)

    Article  Google Scholar 

  19. Acampora, G., Cook, D.J., Rashidi, P., Vasilakos, A.V.: A survey on ambient intelligence in healthcare. Proc. IEEE 101(12), 2470–2494 (2013)

    Article  Google Scholar 

  20. Xu, L., Yang, Y., Li, Y.: Resource allocation of limited feedback in clustered wireless mesh networks. Wirel. Pers. Commun. 75(2), 901–913 (2013)

    Article  Google Scholar 

  21. Han, B., Feng, G., Chen, Y.: Heterogeneous resource allocation algorithm for ad hoc networks with utility fairness. Int. J. Distrib. Sens. Netw. 11(1), 686189 (2015)

    Article  Google Scholar 

  22. Kim, Y., Choi, H., Lee, J.: A bioinspired fair resource-allocation algorithm for TDMA-based distributed sensor networks for IoT. Int. J. Distrib. Sens. Netw. 12(4), 7296359 (2016)

    Article  Google Scholar 

  23. Khan, M.: Resource-aware task scheduling by an adversarial bandit solver method in wireless sensor networks. EURASIP J. Wirel. Commun. Netw. 1, 2016 (2016)

    Google Scholar 

  24. Kim, S., Song, B.: A prioritized resource allocation algorithm for multiple wireless body area networks. Wirel. Netw. 23(3), 727–735 (2016)

    Article  Google Scholar 

  25. Lin, F., Chen, C., He, T., Ma, K., Guan, X.: A separation principle for resource allocation in industrial wireless sensor networks. Wirel. Netw. 23(3), 805–818 (2016)

    Article  Google Scholar 

  26. Istepanian, R.S.H., Philip, N., Martini, M.G., Amso, N., Shorvon, P.: Subjective and objective quality assessment in wireless teleultrasonography imaging. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2008)

  27. Vidhya, K., Shenbagadevi, S.: Performance analysis of medical image compression. In: International Conference on Signal Processing Systems (2009)

  28. Pesce, L.L., Metz, C.E., Doi, K.: Experimental design and data analysis in receiver operating characteristic studies: lessons learned from reports in Radiology from 1997 to 2006. Radiology 253(3), 822–830 (2009)

    Article  Google Scholar 

  29. Kim, B., Lee, K.H., Kim, K.J., Mantiuk, R., Kim, H.R., Kim, Y.H.: Artifacts in slab average-intensity-projection images reformatted from JPEG 2000 compressed thin-section abdominal CT Data sets. Am. J. Roentgenol. 190(6), 342–350 (2008)

    Article  Google Scholar 

  30. Arar, A., Mohamed, A., El-Sherif, A., Leung, V.: Optimal resource allocation for green and clustered video sensor networks. IEEE Syst. J. (2016). https://doi.org/10.1109/JSYST.2016.2618386

    Article  Google Scholar 

  31. Li, X., Zhang, J., Yin, M.: Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput. Appl. 24(7–8), 1867–1877 (2013)

    Google Scholar 

  32. Krishnanand, K., Ghose, D.: Glowworm swarm based optimization algorithm for multimodal functions with collective robotics applications. Multiagent Grid Syst. 2(3), 209–222 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramesh.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, S., Yaashuwanth, C. RETRACTED ARTICLE: QoS and QoE Enhanced Resource Allocation for Wireless Video Sensor Networks Using Hybrid Optimization Algorithm. Int J Parallel Prog 48, 192–212 (2020). https://doi.org/10.1007/s10766-018-0581-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10766-018-0581-y

Keywords

Navigation