Skip to main content
Log in

Photoprotective strategies against drought are depending on the elevation provenance in Phacelia secunda

  • Original Article
  • Published:
Alpine Botany Aims and scope Submit manuscript

Abstract

The central Chilean Andes are located in a Mediterranean-type climate zone, characterized by dry summers and high irradiance. This creates a contrasting elevational gradient because higher elevations get more solid precipitation and lower temperatures, resulting in higher soil humidity along the growing season compared with severe drought at lower elevations. Therefore, species with wide elevational distributions, such as Phacelia secunda, must have developed specific adaptations to cope with contrasting severity of drought stress-induced photoinhibition at different elevations. We hypothesize that P. secunda from lower elevation, is more tolerant to drought stress-induced photo-damage than plants from high elevation. This higher tolerance will be associated to a higher diversity of photoprotective strategies in plants that naturally suffers severe drought every growing season. To test this hypothesis, plants from 2700 and 3600 m in the central Chilean Andes were grown under the common garden and then subjected to water restriction. We measured stress indicators, photochemistry of PSII and PSI and estimate alternative electron sinks. Drought affected P. secunda photosynthetic performance differentially depending on the elevation of provenance. Plants from lower elevation exhibited higher drought tolerance than higher elevation ones. This was related to higher levels of heat dissipation and alternative electron sinks exhibited by plants from lower elevation under drought stress. We concluded that plants naturally subjected to recurrent drought are better adapted to respond to drought stress using additional photochemical photoprotective mechanisms and confirm the role of alternative electron sinks ameliorating photodamage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ananyev G, Gates C, Kaplan A, Dismukes GC (2017) Photosystem II-cyclic electron flow powers exceptional photoprotection and record growth in the microalga Chlorella ohadii. Biochim Biophys Acta Bioenerg 1858:873–883

    CAS  PubMed  Google Scholar 

  • Arroyo MTK, Armesto JJ, Villagrán C (1981) Plant phenological patterns in the high Andean cordillera of central Chile. J Ecol 69:205–222

    Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Phys 50:601–639

    CAS  Google Scholar 

  • Asada K (2006) Production and Scavenging of Reactive Oxygen Species in Chloroplasts and Their Functions. Plant Physiol 41:391–396

    Google Scholar 

  • Berninger F, Streb P, Ensminger I (2012) Ecophysiology of photosynthesis in boreal, arctic and alpine ecosystems. Terrestrial photosynthesis in a changing environment—a molecular, physiological and Ecological approach, 1st edn. Cambridge University Press, Cambridge, pp 488–501

    Google Scholar 

  • Biehler K, Fock H (1996) Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat. Plant Physiol 112:265–272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bravo LA, Saavedra-Mella FA, Vera F, Guerra A, Cavieres LA, Ivanov AG, Huner NPA, Corcuera LJ (2007) Effect of cold acclimation on the photosynthetic performance of two ecotypes of Colobanthus quitensis (Kunth) Bartl. J Exp Bot 58:3581–3590

    CAS  PubMed  Google Scholar 

  • Brestic M, Cornic G, Fryer MJ, Baker NR (1995) Does photorespiration protect the photosynthetic apparatus in French bean leaves from photoinhibition during drought stress? Planta 196:450–457

    CAS  Google Scholar 

  • Buchner O, Holzinger A, Lütz C (2007) Effects of temperature and light on the formation of chloroplast protrusions in leaf mesophyll cells of high alpine plants. Plant Cell Environ 30:1347–1356

    CAS  PubMed  Google Scholar 

  • Cavieres LA (2000) Variación morfológica de Phacelia secunda J.F. Gmel. (Hydrophyllaceae) a lo largo de un gradiente altitudinal en Chile central. Gayana Bot 57:89–96

    Google Scholar 

  • Cavieres LA, Badano E, Sierra-Almeida A, González-Gómez S, Molina-Montenegro M (2006) Positive interactions between alpine plant species and the nurse cushion plant Laretia acaulis do not increase with elevation in the Andes of central Chile. New Phytol 169:59–69

    PubMed  Google Scholar 

  • Cavieres LA, Badano EI, Sierra-Almeida A, Molina-Montenegro MA (2007) Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the high Andes of central Chile. Arct Antarct Alp Res 39:229–236

    Google Scholar 

  • Chen HX, Gao HY, An SZ, Li WJ (2004) Dissipation of excess energy in Mehler-peroxidase reaction in Rumex leaves during salt shock. Photosynthetica 42:117–122

    CAS  Google Scholar 

  • Chow WS, Hope AB (2004) Electron fluxes through photosystem I in cucumber leaf discs probed by far-red fight. Photosynth Res 81:77–89

    CAS  PubMed  Google Scholar 

  • Cornic G, Massacci A (1996) Leaf Photosynthesis under drought Stress. In: Baker NR (ed) Photosynthesis and the Environment. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Demmig-Adams B (1999) Survey of thermal energy dissipation and pigment composition in sun and shade leaves. Plant Cell Physiol 39:474–482

    Google Scholar 

  • Demmig-Adams B, Adams W (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26

    Google Scholar 

  • Essemine J, Govindachary S, Ammar S, Bouzid S, Carpentier R (2011) Abolition of photosystem I cyclic electron flow in Arabidopsis thaliana following thermal-stress. Plant Physiol Biochem 49:235–243

    CAS  PubMed  Google Scholar 

  • Flexas J, Badger M, Chow WS, Medrano H, Osmond CB (1999) Analysis of the relative increase in photosynthetic O2 uptake when photosynthesis in grapevine leaves is inhibited following low night temperatures and/or water stress. Plant Physiol 121:675–684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flores-Bavestrello A, Król M, Ivanov AG, Hüner NPA, García-Plazaola JI, Corcuera LJ, Bravo LA (2016) Two Hymenophyllaceae species from contrasting natural environments exhibit a homoiochlorophyllous strategy in response to desiccation stress. J Plant Physiol. https://doi.org/10.1016/j.jplph.2015.12.003

    Article  PubMed  Google Scholar 

  • Galmés J, Abadía A, Cifré J, Medrano H, Flexas J (2007) Photoprotection processes under water stress and recovery in Mediterranean plants with different growth forms and leaf habits. Physiol Plant 130:495–510

    Google Scholar 

  • Gao S, Wang G (2012) The enhancement of cyclic electron flow around photosystem I improves the recovery of severely desiccated Porphyra yezoensis (Bangiales, Rhodophyta). J Exp Bot 63:4349–4358

    CAS  PubMed  Google Scholar 

  • Gao S, Niu J, Chen W, Wang G, Xie X, Pan G, Gu W, Zhu D (2013) The physiological links of the increased photosystem II activity in moderately desiccated Porphyra haitanensis (Bangiales, Rhodophyta) to the cyclic electron flow during desiccation and re-hydration. Photosynth Res 116:45–54

    CAS  PubMed  Google Scholar 

  • García-Plazaola JI, Rojas R, Christie DA, Coopman RE (2015) Photosynthetic responses of trees in high-elevation forests: comparing evergreen species along an elevation gradient in the Central Andes. AoB Plants 7:plv058. https://doi.org/10.1093/aobpla/plv058

    Article  PubMed  PubMed Central  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Golding AJ, Johnson JN (2003) Down-regulation of linear and activation of cyclic electron transport during drought. Planta 218:107–114

    CAS  PubMed  Google Scholar 

  • Golding AJ, Finazzi G, Johnson GN (2004) Reduction of the thylakoid electron transport chain by stromal reductants-evidence for activation of cyclic electron transport upon dark adaptation or under drought. Planta 220:356–363

    CAS  PubMed  Google Scholar 

  • Guan X, Gu S (2009) Photorespiration and photoprotection of grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) under water stress. Photosynthetica 47:437–444

    CAS  Google Scholar 

  • Guan X, Zhao S, Li D, Shu H (2004) Photoprotective function of photorespiration in several grapevine cultivars under drought stress. Photosynthetica 42:31–36

    CAS  Google Scholar 

  • Habibi G, Ajory N (2015) The effect of drought on photosynthetic plasticity in Marrubium vulgare plants growing at low and high altitudes. J Plant Res. https://doi.org/10.1007/s10265-015-0748-1

    Article  PubMed  Google Scholar 

  • Haupt-Herting S, Fock HP (2002) Oxygen exchange in relation to carbon assimilation in water-stressed leaves during photosynthesis. Ann Bot London 89:851–859

    CAS  Google Scholar 

  • Heber U (2002) The Mehler reaction in relation to cyclic electron transport in C3 plants. Photosynth Res 73:223–231

    CAS  PubMed  Google Scholar 

  • Heber U, Bligny R, Streb P, Douce R (1996) Photorespiration is essential for the protection of the photosynthetic apparatus of C3 plants against photoinactivation under sunlight. Bot Acta 109:307–315

    CAS  Google Scholar 

  • Hernández-Fuentes C, Bravo LA, Cavieres LA (2015) Photosynthetic responses and photoprotection strategies of Phacelia secunda plants exposed to experimental warming at different elevations in the central Chilean Andes. Alp Bot 125:87–99

    Google Scholar 

  • Huang W, Zhang SB, Cao KF (2010) Stimulation of cyclic electron flow during recovery after chilling-induced photoinhibition of PSII. Plant Cell Physiol 51:1922–1928

    CAS  PubMed  Google Scholar 

  • Huang W, Zhang SB, Cao KF (2011) Cyclic electron flow plays an important role in photoprotection of tropical trees illuminated at temporal chilling temperature. Plant Cell Physiol 52:297–305

    CAS  PubMed  Google Scholar 

  • Huang W, Yang SJ, Zhang SB (2012) Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescensunder drought stress. Planta 235:819–828

    CAS  PubMed  Google Scholar 

  • Huang W, Zhang SB, Hong H (2015) Insusceptibility of oxygen-evolving complex to high light in Betula platyphylla. J Plant Res 128:307–315

    CAS  PubMed  Google Scholar 

  • Huner NPA, Maxwell DP, Gray GR, Savitch LV, Krol M, Ivanov AG, Falk S (1996) Sensing environmental temperature change through imbalances between energy supply and energy consumption: redox state of photosystem II. Physiol Plant 98:358–364

    CAS  Google Scholar 

  • Johnson GN (2011) Physiology of PSI cyclic electron transport in higher plants. Biochim Biophys Acta 1807:384–389

    CAS  PubMed  Google Scholar 

  • Klughammer C, Schreiber U (2008) Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the saturation pulse method. PAM Appl Not 1:27–35

    Google Scholar 

  • Kohzuma K, Cruz JA, Akashi K, Hoshiyasu S, Munekage YN, Yokota A, Kramer DM (2009) The long-term responses of the photosynthetic proton circuit to drought. Plant Cell and Environ 32:209–219

    CAS  Google Scholar 

  • Körner C (2003) Alpine plant life, 2da edn. Springer, Berlin, p 344

    Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218

    CAS  PubMed  Google Scholar 

  • Kuhn M (2012) Rain and snow at high elevations: the interaction of water, energy and trace substances. In: Lütz C (ed) Plant in alpine regions: cell physiology of adaptation and survival strategies. Springer, Wien, pp 1–10

    Google Scholar 

  • Li XG, Meng QW, Jiang GQ, Zou Q (2003) The susceptibility of cucumber and sweet pepper to chilling under low irradiance is related to energy dissipation and water-water cycle. Photosynthetica 41:259–265

    CAS  Google Scholar 

  • Machler F, Nosberger J (1978) The adaptation to temperature of photorespiration and of the photosynthetic carbon metabolism of altitudinal ecotypes of Trifolium repens L. Oecologia 35:267–276

    CAS  PubMed  Google Scholar 

  • Machler F, Nosberger J, Erismann KH (1977) Photosynthetic 14CO2 fixation products in altitudinal ecotypes of Trifolium repens L. with different temperature requirements. Oecologia 31:79–84

    CAS  PubMed  Google Scholar 

  • Makino A, Miyake C, Yokota A (2002) Physiological functions of the water–water cycle (Mehler reaction) and the cyclic electron flow around PSI in rice leaves. Plant Cell Physiol 43:1017–1026

    CAS  PubMed  Google Scholar 

  • Manuel N, Cornic G, Aubert S, Choler P, Bligny G, Heber U (1999) Protection against Photoinhibition in the Alpine Plant Geum montanum. Oecologia 119:149–158

    CAS  PubMed  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51:659–668

    CAS  PubMed  Google Scholar 

  • Miyake C (2010) Alternative electron flows (water–water cycle and cyclic electron flow around PSI) in photosynthesis: molecular mechanisms and physiological functions. Plant Cell Physiol 51(12):1951–1963

    CAS  PubMed  Google Scholar 

  • Miyake C, Horiguchi S, Makino A, Shinzaki Y, Yamamoto H, Tomizawa K (2005) Effects of light intensity on cyclic electron flow around PSI and its relationship to non-photochemical quenching of Chl fluorescence in tobacco leaves. Plant Cell Physiol 46:1819–1830

    CAS  PubMed  Google Scholar 

  • Moss DA, Bendall DS (1984) Cyclic electron transport in chloroplasts: the Q-cycle and the site of action of antimycin. Biochim Biophys Acta 767:389–395

    CAS  Google Scholar 

  • Müller P, Xiao-Ping L, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    PubMed  PubMed Central  Google Scholar 

  • Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371

    CAS  PubMed  Google Scholar 

  • Munekage Y, Hashimoto M, Miyake C (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579–582

    CAS  PubMed  Google Scholar 

  • Munekage Y, Genty B, Peltier G (2008) Effect of PGR5 impairment on photosynthesis and growth in Arabidopsis thaliana. Plant Cell Physiol 49:1688–1698

    CAS  PubMed  Google Scholar 

  • Nogués S, Alegre L (2002) An increase in water deficit has no impact on the photosynthetic capacity of field-grown Mediterranean plants. Funct Plant Biol 29:621–630

    Google Scholar 

  • Ogren WL (1984) Photorespiration: pathways, regulation, and modification. Ann Rev Plant Physiol 35:415–442

    CAS  Google Scholar 

  • Öquist G, Huner NP (2003) Photosynthesis of overwintering evergreen plants. Annu Rev Plant Biol 54:329–355

    PubMed  Google Scholar 

  • Ort D, Baker N (2002) A photoprotective role for O2 as an alternative electron sink in photosynthesis? Curr Opin Plant Biol 3:193–198

    Google Scholar 

  • Osmond CB, Grace SC (1995) Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis? J Exp Bot 46:1351–1362

    CAS  Google Scholar 

  • Pfündel E, Klughammer C, Schreiber U (2008) Monitoring the effects of reduced PS II antenna size on quantum yields of photosystems I and II using the Dual-PAM-100 measuring system. PAM Appl Not 1:21–24

    Google Scholar 

  • Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30:1041–1051

    CAS  PubMed  Google Scholar 

  • Ruuska SA, Badger MR, Andrews TJ, von Caemmerer S (2000) Photosynthetic electron sinks in transgenic tobacco with reduced amounts of Rubisco: little evidence for significant Mehler reaction. J Exp Bot 51:357–368

    CAS  PubMed  Google Scholar 

  • Sanfuentes C, Sierra-Almeida A, Cavieres LA (2012) Efecto del aumento de la temperatura en el desempeño fotosintético de una especie alto-andina en dos altitudes contrastantes. Gayan Bot 69:38–46

    Google Scholar 

  • Santibáñez F, Uribe JM (1990) Atlas agroclimático de Chile. Regiones VIII y IX. Ediciones Universidad de Chile, Santiago

    Google Scholar 

  • Shikanai T (2014) Central role of cyclic electron transport around photosystem I in the regulation of photosynthesis. Curr Opin Biotechnol 26:25–30

    CAS  PubMed  Google Scholar 

  • Sierra-Almeida A, Cavieres LA (2010) Summer freezing resistance decreased in high-elevation plants exposed to experimental warming in the central Chilean Andes. Oecologia 163:267–276

    PubMed  Google Scholar 

  • Sierra-Almeida A, Reyes-Bahamonde C, Cavieres LA (2016) Drought increases the freezing resistance of high-elevation plants of the Central Chilean Andes. Oecologia 181:1011–1023

    PubMed  Google Scholar 

  • Strand DD, Livingston AK, Satoh-Cruza M, Froehlich JE, Maurino VG, Kramer DM (2015) Activation of cyclic electron flow by hydrogen peroxide in vivo. Proc Natl Acad Sci 12:5539–5544

    Google Scholar 

  • Streb P, Cornic G (2012) Photosynthesis and antioxidative protection in alpine herbs. In: Lütz C (ed) Plant in Alpine regions: cell physiology of adaptation and survival strategies. Springer, Wien, pp 75–97

    Google Scholar 

  • Streb P, Feierabend J, Bligny R (1997) Resistance to photoinhibition of photosystem II and catalase and antioxidative protection in high mountain plants. Plant Cell Environ 20:1030–1040

    CAS  Google Scholar 

  • Streb P, Feierabend Y, Bligny R (1998) Divergent strategies of photoprotection in high mountain plants. Planta 207:313–324

    CAS  Google Scholar 

  • Streb P, Josse EM, Gallouët E, Baptist F, Kuntz M, Cornic G (2005) Evidence for alternative electron sinks to photosynthetic carbon assimilation in the high mountain plant species Ranunculus glacialis. Plant Cell Environ 28:1123–1135

    CAS  Google Scholar 

  • Takahashi S, Milward SE, Fan DY, Chow WS, Badger M (2009) How does cyclic electron flow alleviate photoinhibition in arabidopsis? Plant Physiol 149:1560–1567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker BJ, Strand DD, Kramer DM, Cousins AB (2014) The response of cyclic electron flow around photosystem i to changes in photorespiration and nitrate assimilation. Plant Physiol 165:453–462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiese C, Shi LB, Heber U (1998) Oxygen reduction in the Mehler reaction is insufficient to protect photosystems I and II of leaves against photoinhibition. Physiol Plant 102:437–446

    CAS  Google Scholar 

  • Wilhelm C, Selmar D (2011) Energy dissipation is an essential mechanism to sustain the viability of plants: the physiological limits of improved photosynthesis. J Plant Physiol 168:79–87

    CAS  PubMed  Google Scholar 

  • Williams EL, Hovenden MJ, Close DC (2003) Strategies of light energy utilization, dissipation and attenuation in six co-occurring alpine heath species in Tasmania. Funct Plant Biol 30:1205–1218

    Google Scholar 

  • Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc B 355:1517–1529

    CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by Fondecyt 1060910, CONICYT AFB170008 and NEXER-UFRO (NXR17-0002). Authors thank Dan Harris-Pascal for English corrections in the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

C.H.F and L.A.B conceived the idea, and all authors made substantial contributions to the study design. All authors contributed to acquisition of data and C.H.F and R.E.C led analyses. C.H.F led manuscript preparation with substantial critical and editorial input from all authors.

Corresponding author

Correspondence to Carolina Hernández-Fuentes.

Ethics declarations

Conflict of interest

This study is in compliance with ethical standards and the authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Fuentes, C., Coopman, R.E., Cavieres, L.A. et al. Photoprotective strategies against drought are depending on the elevation provenance in Phacelia secunda. Alp Botany 129, 123–135 (2019). https://doi.org/10.1007/s00035-019-00221-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00035-019-00221-7

Keywords

Navigation