Skip to main content
Log in

Visible and near-infrared spectroscopy detects queen honey bee insemination

La spectroscopie visible et la spectrométrie IR proche détectent l’insémination des reines d’abeilles

Durch VIS-NIR-Spektroskopie kann die Besamung der Honigbienenkönigin festgestellt werden

  • Original Article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

The abdomens of honey bee queens and semen from drone bees were analyzed by visible and near-infrared spectroscopy. Mated honey bee queens could be distinguished from virgin queens by their absorption spectra with 100% accuracy. Spectra of semen showed that classifications of queens were likely influenced by the presence or absence of semen in the queen spermathecae. However, physiological or morphological changes that occur in the queens after mating probably influenced the classifications also.

Zusammenfassung

Im Allgemeinen können die inneren Organe der Honigbienen nicht untersucht werden, ohne die Bienen zuvor zu töten. Eine schnelle und nicht invasive Methode zum Nachweis von Sperma in der Spermatheka der Bienenkönigin wäre aber äußerst nützlich. Die VIS-NIR-Spektroskopie (parallele Spektroskopie im sichtbaren Wellenlängenbereich und im Nahen Infrarot) wurde bereits erfolgreich bei anderen Untersuchungen von Insektengeweben eingesetzt; hier wurde sie dazu benutzt, unbegattete Königinnen, begattete Königinnen und das zugehörige Drohnensperma zu identifizieren. Wir untersuchten 52 begattete und 52 unbegattete Königinnen, indem wir den Strahl des Spektrometers auf den Abschnitt des Königinnenabdomens richteten, in dem sich die Spermatheka befindet. Dabei konnten begattete von unbegatteten Königinnen zu 100% unterschieden werden (Abb. 1 und Abb. 2). Die Unterschiede in den Spektren könnten durch das Sperma in der Spermatheka der begatteten Königinnen hervorgerufen worden sein (Abb. 3). Allerdings scheinen auch physiologische und morphologische Veränderungen, die bei der Königin nach der Paarung auftreten, eine wichtige Rolle bei den Unterschieden zwischen den Spektren zu spielen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aldrich B.T., Maghirang E.B., Dowell F.E., Kambhampati S. (2007) Identification of termite species and subspecies of the genus Zootermopsis using near-infrared reflectance spectroscopy, J. Insect Sci. 7, 18.

    Article  PubMed  Google Scholar 

  • Cole T.J., Ram M.S., Dowell F.E., Omwega C.O., Overholt W.A., Ramaswamy S.B. (2003) Near-infrared spectroscopic method to identify Cotesia flavipes and Cotesia sesamiae (Hymenoptera: Braconidae), Ann. Entomol. Soc. Am. 96, 865–869.

    Article  CAS  Google Scholar 

  • Collins A.M., Pettis J.S. (2001) Effect of Varroa on semen quality, Am. Bee J. 141, 590–593.

    Google Scholar 

  • Dade H.H. (1994) Anatomy and dissection of the honey bee, International Bee Research Association, Cardiff, UK.

    Google Scholar 

  • Deepinder F., Chowdary H.T., Agarwal A. (2007) Role of metabolomic analysis of biomarkers in the management of male infertility, Expert Rev. Mol. Diagn. 7, 351–356.

    Article  PubMed  CAS  Google Scholar 

  • Dowell F.E., Broce A.B., Xie F., Throne J.E., Baker J.E. (2000) Detection of parasitized fly puparia using near-infrared spectroscopy, J. Near Infrared Spectrosc. 8, 259–265.

    Article  CAS  Google Scholar 

  • Dowell F.E., Parker A.G., Benedict M.Q., Robinson A.S., Broce A.B., Wirtz R.A. (2005) Sex separation of tsetse fly pupae using near-infrared spectroscopy, Bull. Entomol. Res. 95, 249–257.

    Article  PubMed  CAS  Google Scholar 

  • Dowell F.E., Throne J.E., Wang D., Baker J.E. (1999) Identifying stored grain insects using near-infrared spectroscopy, J. Econ. Entomol. 92, 165–169.

    Google Scholar 

  • Hrassnigg N., Leonhard B., Crailsheim K. (2003) Free amino acids in the haemolymph of honey bee queens (Apis mellifera L.), Amino Acids 24, 205–212.

    PubMed  CAS  Google Scholar 

  • Jia F., Maghirang E., Dowell F., Abel C., Ramaswamy S. (2007) Differentiating tobacco budworm and corn earworm using near-infrared spectroscopy, J. Econ. Entomol. 100, 759–764.

    Article  PubMed  Google Scholar 

  • Laidlaw H.H., Jr., Page R.E. (1997) Queen rearing and queen breeding, Wicwas Press, Cheshire, CT.

    Google Scholar 

  • Mackensen O. (1947) The effect of carbon dioxide on initial oviposition of artificially inseminated and virgin queens, J. Econ. Entomol. 40, 344–349.

    PubMed  CAS  Google Scholar 

  • Maghirang E.B., Dowell F.E., Baker J.E., Throne J.E. (2003) Automated detection of single wheat kernels containing live or dead insects using near-infrared reflectance spectroscopy, T. ASAE 46, 1277–1282.

    Google Scholar 

  • Martens H., Naes T. (1989) Multivariate calibrations, John Wiley & Sons, Chichester, UK.

    Google Scholar 

  • Perez-Mendoza J., Dowell F.E., Broce A.B., Wirtz R.A., Xie F., Fabrick J., Throne J.E., Baker, J.E. (2002) Chronological age-grading of house flies by using near-infrared spectroscopy, J. Med. Entomol. 39, 499–508.

    Article  PubMed  Google Scholar 

  • Pettis J.S., Wilson W.T., Shimanuki H., Teel P.D. (1991) Fluvalinate treatment of queen and worker honeybees (Apis mellifera L.) and effects on subsequent mortality, queen acceptance and supersedure, Apidologie 22, 1–7.

    Article  CAS  Google Scholar 

  • Rinderer T.E., De Guzman L.I., Lancaster V.A., Delatte G.T., Stelzer J.A. (1999) Varroa in the mating yard: I. The effects of Varroa jacobsoni and Apistan on drone honey bees, Am. Bee J. 139, 134–139.

    Google Scholar 

  • Shenk J.S., Workman J.J. Jr., Westerhaus M.O. (2001) Application of NIR spectroscopy to agricultural products, in: Burns D., Ciurczak E. (Eds.), Handbook of Near-Infrared Analysis, Marcel Dekker Inc, New York, NY, pp. 419–474.

    Google Scholar 

  • Stokstad E. (2007) The case of the empty hives, Science 316, 970–972.

    Article  PubMed  CAS  Google Scholar 

  • Wallis I. (2007) Predicting the productivity of honeybees from the nutritional value of pollen, in: Honeybee Research Report 2007, RIRDC Publication No. 07/009, Australian Government Rural Industries Research and Development Corporation: Kingston, ACT, pp. 18–19.

    Google Scholar 

  • Williams P.C. (2001) Implementation of near-infrared reflectance technology, in: Williams P., Norris K. (Eds.), Near-infrared Technology in the Agricultural and Food Industries, Am. Assoc. Cereal Chem. Inc., St. Paul, MN, pp. 145–169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Webster.

Additional information

Manuscript editor: Stefan Fuchs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webster, T.C., Dowell, F.E., Maghirang, E.B. et al. Visible and near-infrared spectroscopy detects queen honey bee insemination. Apidologie 40, 565–569 (2009). https://doi.org/10.1051/apido/2009038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/apido/2009038

Navigation