Skip to main content
Log in

Investigation of substrate specificity of sialidases with membrane mimetic glycoconjugates

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Sialidases or neuraminidases play important roles in various physiological and pathological processes by cleaving terminal sialic acids (Sias) (desialylation) from the glycans of both glycoproteins and glycolipids. To understand the biological significance of desialylation by sialidases, it is important to investigate enzyme specificity with native substrate in biological membrane of cells. Herein, we report a membrane-mimicking system with liposome ganglioside conjugates containing different lipids for evaluating substrate specificity of sialidase and the lipid effect on the enzyme activity. Briefly, liposomes of phosphatidylcholine (PC) and cholesterol with ganglioside (GM3 or GM1) along with different percentage of phosphatidylserine (PS) or phosphatidylethanolamine (PE) were prepared and characterized. Their desialylation profiles with Arthrobacter ureafaciens (bacterial) sialidase and H1N1 (influenza viral) sialidase were quantified by HPLC method. A diversity of substrate preference was found for both bacterial and viral sialidase to the liposome ganglioside conjugate platform. The apparent Km and Vmax were dependent on the type of lipid. These results indicate that the intrinsic characteristics of the membrane-like system affect the sialidase specificity and activity. This biomimetic substrate provides a better tool for unravelling the substrate specificity and the biological function of sialidases and for screening of functional sialidase inhibitors as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kelm, S., Schauer, R.: Sialic acids in molecular and cellular interactions. Int. Rev. Cytol.175, 137–240 (1997)

    CAS  PubMed  Google Scholar 

  2. Alley, W.R., Novotny, M.V.: Glycomic analysis of sialic acid linkages in glycans derive from blood serum glycoproteins. J. Proteome Res.9, 3062–3072 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Schauer, R.: Achievements and challenges of sialic acid research. Glycoconj J.17, 485–499 (2000)

    CAS  PubMed  Google Scholar 

  4. Cohen, M., Varki, A.: The sialome-far more than the sum of its parts. OMICS. 14, 455–464 (2010)

    CAS  PubMed  Google Scholar 

  5. Monti, E., Preti, A., Venerando, B., Borsani, G.: Recent development in mammalian sialidase molecular biology. Neurochem. Res.27, 649–663 (2002)

    CAS  PubMed  Google Scholar 

  6. Hasegawa, T., Sugeno, N., Takeda, A., Kobayashi, M., Kikuchi, A., Furukawa, K., Miyagi, T., Itoyama, Y.: Role of Neu4L sialidase and its substrate ganglioside GD3 in neuronal apoptosis induced by catechol metabolites. FEBS Lett.581, 406–412 (2007)

    CAS  PubMed  Google Scholar 

  7. Sasaki, A., Hata, K., Suzuki, S., Sawada, M., Wada, T., Yamaguchi, K., Obinata, M., Tateno, H., Suzuki, H., Miyagi, T.: Overexpression of plasma membrane-associated sialidase attenuates insulin signaling in transgenic mice. J. Biol. Chem.278, 27896–27902 (2003)

    CAS  PubMed  Google Scholar 

  8. Miyagi, T., Yamaguchi, K.: Mammalian sialidases: physiological and pathological roles in cellular functions. Glycobiology. 22, 880–896 (2012)

    CAS  PubMed  Google Scholar 

  9. Saito, M, Yu, R.K. Biochemistry and Function of Sialidases. In: Rosenberg A. (eds) Biology of the Sialic Acids. 1995.

    Google Scholar 

  10. Lewis, A.L., Lewis, W.G.: Host sialoglycans and bacterial sialidases: a mucosal perspective. Cell Microbiol.14, 1174–1182 (2012)

    CAS  PubMed  Google Scholar 

  11. Szymanski, C.M., Schnaar, R.L., Aebi, M. Bacterial and viral infections. In: Varki, A., Cummings, R.D., Esko, J.D., et al., editors. Essentials of Glycobiology [Internet]. 3rd edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2015-2017. Chapter 42 (2017).

  12. Chan, J., Watson, J.N., Lu, A., Cerda, V.C., Borgford, T.J., Bennet, A.J.: Bacterial and viral sialidases: contribution of the conserved active site glutamate to catalysis. Biochemistry.51, 433–441 (2012)

    CAS  PubMed  Google Scholar 

  13. Roy, S., Honma, K., Douglas, C.W., Sharma, A., Stafford, G.P.: Role of sialidase in glycoprotein utilization by Tannerella forsythia. Microbiol.157, 3195–3202 (2011)

    CAS  Google Scholar 

  14. Suzuki, T.: Imaging of sialidase activity and its clinical application. Biol. Pharm. Bull.40, 2015–2023 (2017)

    CAS  PubMed  Google Scholar 

  15. Zhang, Y., Albohy, A., Zou, Y., Smutova, V., Pshezhetsky, A.V., Cairo, C.W.: Identification of selective inhibitors for human neuraminidase isoenzymes using C4, C7-modified 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (DANA) analogues. J. Med. Chem.56, 2948–2958 (2013)

    CAS  PubMed  Google Scholar 

  16. Nan, X., Carubelli, I., Stamatos, N.M.: Sialidase expression in activated human T lymphocytes influences production of IFN-gamma. J. Leukoc. Biol. 81, 284–296 (2007)

    CAS  PubMed  Google Scholar 

  17. Stamatos, N.M., Liang, F., Nan, X., Landry, K., Cross, A.S., Wang, L.X., Pshezhetsky, A.V.: Differential expression of endogenous sialidases of human monocytes during cellular differentiation into macrophages. FEBS J.272, 2545–2556 (2005)

    CAS  PubMed  Google Scholar 

  18. Wang, D., Ozhegov, E., Wang, L., Zhou, A., Nie, H., Li, Y., Sun, X.-L.: Sialylation and desialylation dynamics of monocytes upon differentiation and polarization to macrophages. Glycoconjugate J.33, 725–733 (2016)

    CAS  Google Scholar 

  19. Corfield, A.P., Higa, H., Paulson, J.C., Schauer, R.: The specificity of viral and bacterial sialidases for alpha(2-3)- and alpha(2-6)-linked sialic acids in glycoproteins. Biochim. Biophys. Acta. 744, 121–126 (1983)

    CAS  PubMed  Google Scholar 

  20. Yu, K., Tsai, Y.-T., Ariga, T., Yanagisawa, M.: Structures, biosynthesis, and functions of gangliosides - An overview. J. Oleo. Sci.60, 537–544 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Prokazova, N.V., Samovilova, N.N., Gracheva, E.V., Golovanova, N.K.: Ganglioside GM3 and its biological functions. Biochemistry (Moscow). 74, 235–249 (2009)

    CAS  Google Scholar 

  22. Wolf, A.A., Fujinaga, Y., Lencer, W.I.: Uncoupling of the cholera toxin-GM1 ganglioside receptor complex from endocytosis, retrograde Golgi trafficking, and downstream signal transduction by depletion of membrane cholesterol. J. Biol. Chem. 277, 16249–16256 (2002)

    CAS  PubMed  Google Scholar 

  23. Ravindran, M.S., Tanner, L.B., Wenk, M.R.: Sialic acid linkage in glycosphingolipids is a molecular correlate for trafficking and delivery of extracellular cargo. Traffic. 14, 1182–1191 (2013)

    CAS  PubMed  Google Scholar 

  24. Rodriguez, J.A., Piddini, E., Hasegawa, T., Miyagi, T., Dotti, C.G.: Plasma membrane ganglioside sialidase regulates axonal growth and regeneration in hippocampal neurons in culture. J. Neurosci.21, 8387–8395 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kappagantula, S., Andrews, M.R., Cheah, M., Abad-Rodriguez, J., Dotti, C.G., Fawcett, J.W.: Neu3 sialidase-mediated ganglioside conversion is necessary for axon regeneration and is blocked in CNS axons. J. Neurosci.34, 2477–2492 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pan, X, De Aragão, CBP, Velasco-Martin, JP, Priestman, DA, Wu, HY, Takahashi, K, Yamaguchi, K., Sturiale, L., Garozzo, D., Platt, F.M., Lamarche-Vane, N., Morales, C.R., Miyagi, T., Pshezhetsky, A.V.: Neuraminidases 3 and 4 regulate neuronal function by catabolizing brain gangliosides. FASEB J.31, 3467-3483(2017).

    CAS  PubMed  Google Scholar 

  27. Berenson, C.S., Nawar, H.F., Yohe, H.C., Castle, S.A., Ashline, D.J., Reinhold, V.N., Hajishengallis, G., Connell, T.D.: Mammalian cell ganglioside-binding specificities of E. coli enterotoxins LT-IIb and variant LT-IIb(T13I). Glycobiology. 20, 41-54 (2010).

    PubMed  PubMed Central  Google Scholar 

  28. Shenoy, G.N., Loyall, J., Berenson, C.S., Kelleher Jr., R.J., Iyer, V., Balu-Iyer, S.V., Odunsi, K., Bankert, R.B.: Sialic acid-dependent inhibition of T cells by exosomal ganglioside GD3 in ovarian tumor microenvironments. J. Immunol.201, 3750–3758 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tringali, C., Papini, N., Fusi, P., Croci, G., Borsani, G., Preti, A., Tortora, P., Tettamanti, G., Venerando, B., Monti, E.: Properties of recombinant human cytosolic sialidase HsNEU2. The enzyme hydrolyzes monomerically dispersed GM1 ganglioside molecules. J. Biol. Chem.279, 3169-79 (2004).

    PubMed  Google Scholar 

  30. Chokhawala, H.A., Yu, H., Chen, X.: High-throughput substrate specificity studies of sialidases by using chemoenzymatically synthesized sialoside libraries. ChemBioChem.8, 194–201 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kopitz, J., Sinz, K., Brossmer, R., Cantz, M.: Partial characterization and enrichment of a membrane-bound sialidase specific for gangliosides from human brain tissue. Eur. J. Biochem.248, 527–534 (1997)

    CAS  PubMed  Google Scholar 

  32. Gatt, S., Gazit, B., Cestaro, B., Barenholz, Y.: Hydrolysis of gangliosides in micellar and liposomal dispersion by bacterial neuraminidases. Adv. Exp. Med. Biol.125, 137–146 (1980)

    CAS  PubMed  Google Scholar 

  33. Venerando, B., Cestaro, B., Fiorilli, A., Ghidoni, R., Preti, A., Tettamanti, G.: Kinetics of Vibrio cholerae sialidase action on gangliosidic substrates at different supramolecular-organizational levels. Biochem J.203, 735–742 (1982)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Simons, K., Sampaio, J.L.: Membrane organization and lipid rafts. Cold Spring Harb Perspect. Biol.3, a004697 (2011)

    PubMed  PubMed Central  Google Scholar 

  35. Sanders, C.R., Mittendorf, K.F.: Tolerance to changes in membrane lipid composition as a selected trait of membrane proteins. Biochemistry.50, 7858–7867 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Saito, M., Sugano, K., Nagai, Y.: Action of Arthrobacter ureafaciens sialidase on sialoglycolipid substrates. Mode of action and highly specific recognition of the oligosaccharide moiety of ganglioside GM1. J. Biol. Chem.254, 7845-7854 (1979).

  37. Hitika, T., Aritomi, K., Tanaka, N., Toyoda, H., Suzuki, A., Toida, T., Abe, T., Yanagawa, Y., Ishizuka, I.: Determination of N-acetyl- and N-glycolylneuraminic acids in gangliosides by combination of neuraminidase hydrolysis and fluorometric high-performance liquid chromatography using a GM3 derivative as an internal standard. Anal. Biochem.281, 193–201 (2000)

    Google Scholar 

  38. Stewart, J.C.: Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal. Biochem.104, 10–14 (1980)

    CAS  PubMed  Google Scholar 

  39. Murate, M., Abe, M., Kasahara, K., Iwabuchi, K., Umeda, M., Kobayashi, T.: Transbilayer distribution of lipids at nano scale. J. Cell Sci.128, 1627–1638 (2015)

    CAS  PubMed  Google Scholar 

  40. McMahon, H.T., Boucrot, E.: Membrane curvature at a glance. J. Cell Sci.128, 1065–1070 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, L., Wang, D., Zhou, X., Wu, L., Sun, X.-L.: Systematic investigation of quinoxaline derivatization of sialic acids and their quantitation applicability using high performance liquid chromatography. RSC Adv.4, 45797–45803 (2014)

    CAS  Google Scholar 

  42. van Meer, G.: Dynamic Transbilayer Lipid Asymmetry. Cold Spring Harb Perspect Biol.3, a004671 (2011)

    PubMed  PubMed Central  Google Scholar 

  43. Thomas, P.D., Poznansky, M.J.: Curvature and composition-dependent lipid asymmetry in phosphatidylcholine vesicles containing phosphatidylethanolamine and gangliosides. Biochim Biophys Acta. 978, 85–90 (1989)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Faculty Research Fund from the Center for Gene Regulation in Health and Disease (GRHD) and Faculty Research Development (FRD) Fund at Cleveland State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Long Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomar, S., Sun, XL. Investigation of substrate specificity of sialidases with membrane mimetic glycoconjugates. Glycoconj J 37, 175–185 (2020). https://doi.org/10.1007/s10719-019-09895-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-019-09895-x

Keywords

Navigation