Skip to main content
Log in

The Weyl Law for the phase transition spectrum and density of limit interfaces

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We prove a Weyl Law for the phase transition spectrum based on the techniques of Liokumovich–Marques–Neves. As an application we give phase transition adaptations of the proofs of the density and equidistribution of minimal hypersufaces for generic metrics by Irie–Marques–Neves and Marques–Neves–Song, respectively. We also prove the density of separating limit interfaces for generic metrics in dimension 3, based on the recent work of Chodosh–Mantoulidis, and for generic metrics on manifolds containing only separating minimal hypersurfaces, e.g. \({H_{n}(M,\mathbb{Z}_2) = 0}\), for \({4 \leq n + 1 \leq 7}\). These provide alternative proofs of Yau’s conjecture on the existence of infinitely many minimal hypersurfaces for generic metrics on each setting, using the Allen–Cahn approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Cabré, X.: Entire solutions of semilinear elliptic equations in \(\mathbb{R}^3\) and a conjecture of De Giorgi. J. Am. Math. Soc. 13, 725–739 (2000)

    Article  MATH  Google Scholar 

  2. Cahn, J., Allen, S.: A microscopic theory for domain wall motion and its experimental verification in Fe-Al alloy domain growth kinetics. Le Journal de Physique Colloques 38, C7–51 (1977)

    Article  Google Scholar 

  3. O. Chodosh and C. Mantoulidis. Minimal surfaces and the Allen–Cahn equation on 3-manifolds: Index, multiplicity, and curvature estimates. arXiv:1803.02716 [math.DG], (2018)

  4. Fadell, E.R., Rabinowitz, P.H.: Bifurcation for odd potential operators and an alternative topological index. Journal of Functional Analysis 26, 48–67 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Gaspar. The second inner variation of energy and the Morse index of limit interfaces. arXiv:1710.04719 [math.DG], (2017)

  6. Gaspar, P., Guaraco, M.A.: The Allen-Cahn equation on closed manifolds. Calc. Var. Partial Differ. Equ. 57, 101 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ghoussoub, N.: Location, multiplicity and Morse indices of min-max critical points. J. Reine Angew. Math. 417, 27–76 (1991)

    MathSciNet  MATH  Google Scholar 

  8. M. Gromov. Dimension, nonlinear spectra and width, geometric aspects of functional analysis (1986/87), 132–184, Lecture Notes in Math, 1317 (1986/87)

  9. Gromov, M.: Isoperimetry of waists and concentration of maps. Geom. Funct. Anal. 13, 178–215 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Gromov. Singularities, expanders and topology of maps. I. Homology versus volume in the spaces of cycles. Geom. Funct. Anal., 19 (2009), 743–841

  11. Guaraco, M.A.M.: Min-max for phase transitions and the existence of embedded minimal hypersurfaces. J. Differ. Geom. 108, 91–133 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guth, L.: The width-volume inequality. Geom. Funct. Anal. 17, 1139–1179 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guth, L.: Minimax problems related to cup powers and Steenrod squares. Geom. Funct. Anal. 18, 1917–1987 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. F. Hiesmayr. Spectrum and index of two-sided Allen–Cahn minimal hypersurfaces. arXiv:1704.07738 [math.DG], (2017)

  15. Hutchinson, J.E., Tonegawa, Y.: Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory. Calc. Var. Partial Differ. Equ. 10, 49–84 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. K. Irie. F. Marques, and A. Neves, Density of minimal hypersurfaces for generic metrics. Ann. of Math. (2), 187 (2018), 963–972

  17. Kohn, R.V., Sternberg, P.: Local minimisers and singular perturbations. P. R. Soc. Edinb. A. 111, 69–84 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Liokumovich, F. Marques, and A. Neves. Weyl law for the volume spectrum. Ann. of Math. (2), 187 (2018), 933–961

  19. C. Mantoulidis. Allen–Cahn min-max on surfaces. arXiv:1706.05946 [math.AP], (2017)

  20. Marques, F.C., Neves, A.: Morse index and multiplicity of min-max minimal hypersurfaces. Camb. J. Math. 4, 463–511 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Marques, F.C., Neves, A.: Existence of infinitely many minimal hypersurfaces in positive Ricci curvature. Invent. Math. 209, 577–616 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. F. C. Marques, A. Neves, and A. Song. Equidistribution of minimal hypersurfaces for generic metrics. arXiv:1712.06238 [math.DG], (2017)

  23. Mazet, L., Rosenberg, H.: Minimal hypersurfaces of least area. J. Differ. Geom. 106, 283–316 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Modica, L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98, 123–142 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  25. L. Modica and S. Mortola. Il limite nella \(\Gamma \)-convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A (5), 14 (1977), 526–529

  26. F. Pacard. The role of minimal surfaces in the study of the Allen–Cahn equation, in Geometric analysis: Partial differential equations and surfaces, vol. 570 of Contemp. Math., Amer. Math. Soc., Providence, RI, (2012), pp. 137–163

  27. Pacard, F., Ritoré, M.: From constant mean curvature hypersurfaces to the gradient theory of phase transitions. J. Differ. Geom. 64, 359–423 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Savin, O.: Phase transitions, minimal surfaces and a conjecture of de Giorgi. Curr. Dev. Math. 2009, 59–114 (2009)

    Article  MATH  Google Scholar 

  29. Sharp, B.: Compactness of minimal hypersurfaces with bounded index. J. Differ. Geom. 106, 317–339 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Smale. An infinite dimensional version of Sard's theorem, in The Collected Papers of Stephen Smale: Volume 2, World Scientific, (2000), pp. 529–534

  31. Sternberg, P.: The effect of a singular perturbation on nonconvex variational problems. Arch. Ration. Mech. Anal. 101, 209–260 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tonegawa, Y.: On stable critical points for a singular perturbation problem. Commun. Anal. Geom. 13, 439–459 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tonegawa, Y., Wickramasekera, N.: Stable phase interfaces in the van der Waals-Cahn-Hilliard theory. J. Reine Angew. Math. 668, 191–210 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Vannella, G.: Existence and multiplicity of solutions for a nonlinear Neumann problem. Ann. Mat. Pura Appl. 180, 429–440 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. K. Wang and J. Wei. Finite morse index implies finite ends. arXiv:1705.06831 [math.AP], (2017)

  36. B. White. The space of minimal submanifolds for varying riemannian metrics. Indiana Univ. Math. J., (1991), 161–200

  37. White, B.: On the bumpy metrics theorem for minimal submanifolds. Am. J. Math. 139, 1149–1155 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. N. Wickramasekera. A general regularity theory for stable codimension 1 integral varifolds. Ann. of Math. (2), 179 (2014), 843–1007

Download references

Acknowledgements

Both authors would like to thank Fernando C. Marques and André Neves for useful discussions and their interest in this work. The first author is grateful to the Department of Mathematics at Princeton University for its hospitality. Part of this work and the first drafts were carried out while visiting during the academic year of 2017–2018. The second author would like to thank FIM - ETH, Zurich for their kind hospitality, where this work was finished during a visit in Spring 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. M. Guaraco.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was partly supported by NSF Grant DMS-1311795.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaspar, P., Guaraco, M.A.M. The Weyl Law for the phase transition spectrum and density of limit interfaces. Geom. Funct. Anal. 29, 382–410 (2019). https://doi.org/10.1007/s00039-019-00489-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-019-00489-1

Navigation