Skip to main content
Log in

Fast Synchronization of Complex Networks via Aperiodically Intermittent Sliding Mode Control

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In the literature, a lot of work focused on studying intermittent control problems via feedback control strategy. No study on the intermittent control problems via sliding mode control method has been reported so far. This paper studies the problem of fast synchronization between two complex dynamical networks via aperiodically intermittent control and sliding mode control. In order to achieve fast synchronization of complex dynamical networks by using aperiodically intermittent sliding mode controller, new differential inequalities are derived firstly. After that, some sufficient finite-time synchronization criteria and finite-time achieving slide mode surface are obtained based on finite-time stability theory, aperiodically intermittent sliding mode control technique and constructing Lyapunov function. Finally, an example is provided to verify the effectiveness of the proposed theoretical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Strogatz SH (2001) Exploring complex networks. Nature 410:268–276

    MATH  Google Scholar 

  2. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256

    MathSciNet  MATH  Google Scholar 

  3. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U (2006) Complex networks: structure and dynamics. Phys Rep 424:175–308

    MathSciNet  MATH  Google Scholar 

  4. Suykens JAK, Osipov GV (2008) Introduction to focus issue: synchronization in complex networks. Chaos 18:037101

    Google Scholar 

  5. Mei J, Jiang M, Huang Z (2011) Outer synchronization between two complex networks with identical and nonidentical topological structures. In: 2011 fourth international workshop on advanced computational intelligence (IWACI), pp 757–762

  6. Al-mahbashi G, Noorani MS, Bakar SA, Vahedi S (2016) Adaptive projective lag synchronization of uncertain complex dynamical networks with disturbance. Neurocomputing 207:645–652

    Google Scholar 

  7. Hu J, Zeng C (2017) Adaptive exponential synchronization of complex-valued Cohen–Grossberg neural networks with known and unknown parameters. Neural Netw 86:90–101

    MATH  Google Scholar 

  8. Xu Y, Zhang J, Zhou W, Tong D (2017) Adaptive synchronization of complex dynamical networks with bounded delay feedback controller. Optik Int J Light Electron Opt 131:467–474

    Google Scholar 

  9. Liu Y, Zhu C, Chu D, Li W (2018) Synchronization of stochastic coupled systems with time-varying coupling structure on networks via discrete-time state feedback control. Neurocomputing 285:104–116

    Google Scholar 

  10. Xu M, Wang J, Huang Y, Wei P, Wang S (2017) Pinning synchronization of complex dynamical networks with and without time-varying delay. Neurocomputing 266:263–273

    Google Scholar 

  11. Ma Y, Ma N, Chen L (2018) Synchronization criteria for singular complex networks with Markovian jump and time-varying delays via pinning control. Nonlinear Anal Hybrid Syst 29:85–99

    MathSciNet  MATH  Google Scholar 

  12. Zheng S (2017) Pinning and impulsive synchronization control of complex dynamical networks with non-derivative and derivative coupling. J Frankl Inst 354(14):6341–6363

    MathSciNet  MATH  Google Scholar 

  13. Yang X, Lu J, Ho DWC, Song Q (2018) Synchronization of uncertain hybrid switching and impulsive complex networks. Appl Math Model 59:379–392

    MathSciNet  MATH  Google Scholar 

  14. Zhang H, Wang X, Lin X (2016) Synchronization of complex-valued neural network with sliding mode control. J Frankl Inst 353(2):345–358

    MathSciNet  MATH  Google Scholar 

  15. Ali MS, Yogambigai J, Cao J (2017) Synchronization of master–slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control. Acta Math Sci 37(2):368–384

    MathSciNet  MATH  Google Scholar 

  16. Huang J, Li C, Han Q (2009) Stabilization of delayed chaotic neural networks by periodically intermittent control. Circuits Syst Signal Process 28:567–579

    MathSciNet  MATH  Google Scholar 

  17. Mei J, Jiang M, Wang B, Liu Q, Xu W, Liao T (2014) Exonential p-Synchronization of non-autonomous Cohen–Grossberg neural networks with reaction–diffusion terms via periodically intermittent control. Neural Process Lett 40:103–126

    Google Scholar 

  18. Liu X, Li P, Chen T (2015) Cluster synchronization for delayed complex networks via periodically intermittent pinning control. Neurocomputing 162:191–200

    Google Scholar 

  19. Zhang Z, He Y, Zhang C, Wu M (2016) Exponential stabilization of neural networks with time-varying delay by periodically intermittent control. Neurocomputing 207:469–475

    Google Scholar 

  20. Chen W, Zhong J, Zheng W (2016) Delay-independent stabilization of a class of time-delay systems via periodically intermittent control. Automatica 71:89–97

    MathSciNet  MATH  Google Scholar 

  21. Ma X, Wang J (2016) Pinning outer synchronization between two delayed complex networks with nonlinear coupling via adaptive periodically intermittent control. Neurocomputing 199:197–203

    Google Scholar 

  22. Feng J, Yang P, Zhao Y (2016) Cluster synchronization for nonlinearly time-varying delayed coupling complex networks with stochastic perturbation via periodically intermittent pinning control. Appl Math Comput 291:52–68

    MathSciNet  MATH  Google Scholar 

  23. Yang S, Li C, Huang T (2016) Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control. Neural Netw 75:162–172

    MATH  Google Scholar 

  24. Wang Q, He Y, Tan G, Wu M (2017) Observer-based periodically intermittent control for linear systems via piecewise Lyapunov function method. Appl Math Comput 293:438–447

    MathSciNet  MATH  Google Scholar 

  25. Li H, Hu C, Jiang H, Teng Z, Jiang Y (2017) Synchronization of fractional-order complex dynamical networks via periodically intermittent pinning control. Chaos Solitons Fractals 103:357–363

    MathSciNet  MATH  Google Scholar 

  26. Wang P, Hong Y, Su H (2018) Stabilization of stochastic complex-valued coupled delayed systems with Markovian switching via periodically intermittent control. Nonlinear Anal Hybrid Syst 29:395–413

    MathSciNet  MATH  Google Scholar 

  27. Guo B, Xiao Y, Zhang C (2018) Synchronization analysis of stochastic coupled systems with time delay on networks by periodically intermittent control and graph-theoretic method. Nonlinear Anal Hybrid Syst 30:118–133

    MathSciNet  MATH  Google Scholar 

  28. Zhang W, Li C, Huang T, Xiao M (2015) Synchronization of neural networks with stochastic perturbation via aperiodically intermittent control. Neural Netw 71:105–111

    MATH  Google Scholar 

  29. Liu M, Jiang H, Hu C (2016) Synchronization of hybrid-coupled delayed dynamical networks via aperiodically intermittent pinning control. J Frankl Inst 353(12):2722–2742

    MathSciNet  MATH  Google Scholar 

  30. Liu X, Liu Y, Zhou L (2016) Quasi-synchronization of nonlinear coupled chaotic systems via aperiodically intermittent pinning control. Neurocomputing 173:759–767

    Google Scholar 

  31. Liu X, Chen Z, Zhou L (2017) Synchronization of coupled reaction–diffusion neural networks with hybrid coupling via aperiodically intermittent pinning control. J Frankl Inst 354(15):7053–7076

    MathSciNet  MATH  Google Scholar 

  32. Lei X, Cai S, Jiang S, Liu Z (2017) Adaptive outer synchronization between two complex delayed dynamical networks via aperiodically intermittent pinning control. Neurocomputing 222:26–35

    Google Scholar 

  33. Wang J (2017) Synchronization of delayed complex dynamical network with hybrid-coupling via aperiodically intermittent pinning control. J Frankl Inst 354(4):1833–1855

    MathSciNet  MATH  Google Scholar 

  34. Wu X, Feng J, Nie Z (2018) Pinning complex-valued complex network via aperiodically intermittent control. Neurocomputing 305:70–77

    Google Scholar 

  35. Zhou P, Cai S, Jiang S, Liu Z (2018) Exponential cluster synchronization in directed community networks via adaptive nonperiodically intermittent pinning control. Physica A 492:1267–1280

    MathSciNet  Google Scholar 

  36. Zhang D, Mei J, Miao P (2017) Global finite-time synchronization of different dimensional chaotic systems. Appl Math Model 48:303–315

    MathSciNet  MATH  Google Scholar 

  37. Ren H, Deng F, Peng Y (2018) Finite time synchronization of Markovian jumping stochastic complex dynamical systems with mix delays via hybrid control strategy. Neurocomputing 272:683–693

    Google Scholar 

  38. Qiu S, Huang Y, Ren S (2018) Finite-time synchronization of multi-weighted complex dynamical networks with and without coupling delay. Neurocomputing 275:1250–1260

    Google Scholar 

  39. Mei J, Jiang M, Xu W, Wang B (2013) Finite-time synchronization control of complex dynamical networks with time delay. Commun Nonlinear Sci Numer Simulat 18:2462–2478

    MathSciNet  MATH  Google Scholar 

  40. Mei J, Jiang M, Wang X, Han J, Wang S (2014) Finite-time synchronization of drive-response systems via periodically intermittent adaptive control. J Frankl Inst 351:2691–2710

    MathSciNet  MATH  Google Scholar 

  41. Mei J, Jiang M, Wu Z, Wang X (2014) Periodically intermittent controlling for finite-time synchronization of complex dynamical networks. Nonlinear Dyn 79:295–305

    MATH  Google Scholar 

  42. Yang F, Mei J, Wu Z (2016) Finite-time synchronisation of neural networks with discrete and distributed delays via periodically intermittent memory feedback control. IET Control Theory Appl 10:1630–1640

    MathSciNet  Google Scholar 

  43. Zhao H, Li L, Xiao J, Yang Y, Zheng M (2017) Parameters tracking identification based on finite-time synchronization for multi-links complex network via periodically switch control. Chaos Solitons Fractals 104:268–281

    MathSciNet  MATH  Google Scholar 

  44. Cheng L, Yang Y, Li L, Sui X (2018) Finite-time hybrid projective synchronization of the drive-response complex networks with distributed-delay via adaptive intermittent control. Physica A 500:273–286

    MathSciNet  Google Scholar 

  45. Liu M, Jiang H, Hu C (2017) Finite-time synchronization of delayed dynamical networks via aperiodically intermittent control. J Frankl Inst 354(13):5374–5397

    MathSciNet  MATH  Google Scholar 

  46. Zhang D, Shen Y, Mei J (2017) Finite-time synchronization of multi-layer nonlinear coupled complex networks via intermittent feedback control. Neurocomputing 225:129–138

    Google Scholar 

  47. Mei J, Jiang M, Wang J (2013) Finite-time structure identification and synchronization of drive-response systems with uncertain parameter. Commun Nonlinear Sci Numer Simulat 18:999–1015

    MathSciNet  MATH  Google Scholar 

  48. Fan Y, Liu H, Zhu Y, Mei J (2016) Fast synchronization of complex dynamical networks with time-varying delay via periodically intermittent control. Neurocomputing 205:182–194

    Google Scholar 

  49. Liu X, Chen T (2015) Synchronization of linearly coupled networks with delays via aperiodically intermittent pinning control. IEEE Trans Neural Netw Learn Syst 26(10):2396–2407

    MathSciNet  Google Scholar 

  50. Zhang G, Shen Y (2015) Exponential stabilization of memristor-based chaotic neural networks with time-varying delays via intermittent control. IEEE Trans Neural Netw Learn Syst 26:1431–1441

    MathSciNet  Google Scholar 

  51. Kang Y, Qin J, Ma Q, Gao H, Zheng W (2018) Cluster synchronization for interacting clusters of nonidentical nodes via intermittent pinning control. IEEE Trans Neural Netw Learn Syst 29(5):1747–1759

    MathSciNet  Google Scholar 

  52. Hu C, Yu J (2016) Generalized intermittent control and its adaptive strategy on stabilization and synchronization of chaotic systems. Chaos Solitons Fractals 91:262–269

    MathSciNet  MATH  Google Scholar 

  53. Guan Z, Yue D, Hu B, Li T, Liu F (2017) Cluster synchronization of coupled genetic regulatory networks with delays via aperiodically adaptive intermittent control. IEEE Trans Nanobiosci 16(7):585–599

    Google Scholar 

  54. Hu A, Cao J (2017) Consensus of multi-agent systems via intermittent event-triggered control. Int J Syst Sci 48(2):280–287

    MathSciNet  MATH  Google Scholar 

  55. Xiong W, Patel R, Cao J, Zheng WX (2017) Synchronization of hierarchical time-varying neural networks based on asynchronous and intermittent sampled-data control. IEEE Trans Neural Netw Learn Syst 28(11):2837–2843

    MathSciNet  Google Scholar 

  56. Zheng S (2016) Intermittent impulsive projective synchronization in time-varying delayed dynamical network with variable structures. Complexity 21:547–556

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous reviewers for their valuable comments and constructive suggestions. This research is supported by National Natural Science Foundation of China (Grant Nos. 11771172, 11871305, 61903149, 61907021), Humanity and Social Science foundation of MOE of China (20171304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuling Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 4

Take \(M_0=V^{1-\eta }(0)+\frac{\alpha }{p_1}\) and \(W(t)=V^{1-\eta }(t)\text{ exp }\{(1-\eta )p_1t\}\), where \(t\ge 0\). Let \(Q(t)=W(t)-M_0+\frac{\alpha }{p_1}\text{ exp }\{(1-\eta )p_1t\}\).

It will be proven in the following parts that

$$\begin{aligned} Q(t)\le 0, \end{aligned}$$
(55)

for all \(t \in [0,s_0)\). Otherwise, there is a \(a_0\in [0,s_0)\), to make that

$$\begin{aligned}&Q(a_0)=0,\quad \dot{Q}(a_0)> 0, \end{aligned}$$
(56)
$$\begin{aligned}&Q(t)\le 0,\quad 0\le t<s_0. \end{aligned}$$
(57)

With Eqs. (55), (56) and (57), one can obtain

$$\begin{aligned} \dot{Q}(a_0)= & {} (1-\eta )V^{-\eta }(a_0)\dot{V}(a_0)e^{(1-\eta )p_1a_0}\nonumber \\&+\,p_1(1-\eta )V^{1-\eta }(a_0)e^{(1-\eta )p_1a_0}+\alpha (1- \eta )e^{(1-\eta )p_1a_0} \nonumber \\\le & {} (1-\eta )V^{-\eta }(a_0)(-\alpha V^\eta (a_0)- p_1 V(a_0))\cdot e^{(1-\eta )p_1a_0}\nonumber \\&+\,p_1(1-\eta )V^{1-\eta }(a_0)e^{(1-\eta )p_1a_0}+\alpha (1-\eta )e^{(1-\eta )p_1a_0} \nonumber \\= & {} -\alpha (1-\eta )e^{(1-\eta )p_1a_0}-p_1(1-\eta )V^{1-\eta }(a_0)e^{(1-\eta )p_1a_0}\nonumber \\&+\,p_1(1-\eta )V^{1-\eta }(a_0)e^{(1-\eta )p_1a_0}+\alpha (1-\eta )e^{(1-\eta )p_1a_0} \nonumber \\= & {} 0, \end{aligned}$$
(58)

which contradicts the second inequality in (56). Hence, (55) holds.

Let \(W_1(t)=V^{1-\eta }(t)e^{(1-\eta )p_1t}e^{-(1-\eta )p_1(t-s_0)}e^{-(1-\eta )p_2(t-s_0)}\), and \(H(t)=W_1(t)-M_0+\frac{\alpha }{p_1}e^{(1-\eta )p_1t}e^{-(1-\eta )p_1(t-s_0)}e^{-(1-\eta )p_2(t-s_0)},~t\ge s_0\) and prove that

$$\begin{aligned} H(t)\le 0. \end{aligned}$$
(59)

for \(t\in [s_0,t_1)\). Otherwise, there exists a \(a_1 \in [s_0,t_1)\) such that

$$\begin{aligned}&H(a_1)=0,\quad \dot{H}(a_1)> 0, \end{aligned}$$
(60)
$$\begin{aligned}&H(t)\le 0,\quad s_0\le t<a_1. \end{aligned}$$
(61)

According to Eqs. (60) and (61),

$$\begin{aligned} \dot{H}(a_1)= & {} \dot{W}_1(a_1)+\frac{\alpha }{p_1}(1-\eta )p_1e^{(1-\eta )p_1a_1}[e^{-(1-\eta )p_1(a_1-s_0)}e^{-(1-\eta )p_2(a_1-s_0)}]\nonumber \\&+\,\frac{\alpha }{p_1}e^{(1-\eta )p_1a_1 }[-(1-\eta )(p_1+p_2)e^{-(1-\eta )(p_1+p_2)(a_1-s_0)}] \nonumber \\= & {} (1-\eta )V^{-\eta }(a_1)\dot{V}(a_1)e^{(1-\eta )p_1a_1}e^{-(1-\eta )(p_1+p_2)(a_1- s_0)} \nonumber \\&+\,V^{1-\eta }(a_1)[e^{(1- \eta )p_1a_1} e^{-(1-\eta )p_1(a_1-s_0)}e^{- (1-\eta )p_2(a_1-s_0)}]'\nonumber \\&+\,\frac{\alpha }{p_1}(1-\eta )p_1 e^{(1-\eta )p_1a_1} \nonumber \\&e^{-(1-\eta ) (p_1+p_2)(a_1-s_0)} - \frac{\alpha }{p_1}(1-\eta )(p_1+p_2)e^{(1-\eta )p_1a_1} e^{-(1-\eta ) (p_1+p_2)(a_1-s_0)} \nonumber \\\le & {} p_2(1-\eta )V^{1-\eta }(a_1)e^{(1-\eta )p_1a_1}e^{-(1- \eta )(p_1+p_2)(a_1-s_0)}+V^{1-\eta }(a_1)[(1-\eta )p_1\nonumber \\&e^{(1-\eta )p_1a_1}e^{-(1-\eta )(p_1+p_2)(a_1-s_0)}-(1-\eta )(p_1+p_2)\nonumber \\&e^{(1-\eta )p_1a_1} e^{-(1-\eta ) (p_1+p_2)(a_1-s_0)}] +\frac{\alpha }{p_1}\nonumber \\&(1-\eta )p_1e^{(1-\eta )p_1a_1}e^{-(1-\eta ) (p_1 +p_2)(a_1-s_0)}- \frac{\alpha }{p_1}(1-\eta )(p_1+p_2)\nonumber \\&e^{(1-\eta )p_1a_1} e^{-(1-\eta )(p_1+p_2)(a_1-s_0)} \nonumber \\= & {} p_2(1-\eta )V^{1-\eta }(a_1)e^{(1-\eta )p_1a_1} e^{-(1- \eta )(p_1+p_2)(a_1-s_0)}\nonumber \\&-p_2(1-\eta )V^{1-\eta }(a_1) e^{(1 -\eta )p_1a_1}\nonumber \\&e^{-(1-\eta )(p_1+p_2) (a_1-s_0)} \nonumber \\&\quad - \frac{\alpha }{p_1}\cdot p_2e^{(1-\eta )p_1a_1}e^{-(1-\eta )(p_1+p_2)(a_1-s_0)} < 0, \end{aligned}$$
(62)

which contradicts the second inequality in (60). Hence (59) holds. From (59), it is easy to see that

$$\begin{aligned} \begin{aligned} W(t)&\le e^{(1-\eta )(p_1+p_2)(t-s_0)}\Big [M_0-\frac{\alpha }{p_1}e^{(1-\eta )p_1t}e^{-(1-\eta )(p_1+p_2)(t-s_0)}\Big ]. \end{aligned} \end{aligned}$$
(63)

Consequently,

$$\begin{aligned} \begin{aligned} W(t)&< e^{(1-\eta )(p_1+p_2)(t-s_0)}\Big [M_0-\frac{\alpha }{p_1}e^{(1-\eta )p_1t}e^{-(1-\eta )(p_1+p_2)(t-s_0)}\Big ]\\&\le e^{(1-\eta )(p_1+p_2)(t_1-s_0)}\Big [M_0-\frac{\alpha }{p_1}e^{(1-\eta )p_1t}e^{-(1-\eta )(p_1+p_2)(t_1-s_0)}\Big ]. \end{aligned} \end{aligned}$$

for \(t\in [\theta T,T)\).

On the other hand, together with (55), one can obtain

$$\begin{aligned} \begin{aligned} W(t)&\le M_0-\frac{\alpha }{p_1} e^{(1-\eta )p_1 t}\\&\le M_0-\frac{\alpha }{p_1}e^{(1-\eta )p_1t} e^{-(1-\eta )(p_1+p_2)(t_1-s_0)}\\&\le e^{(1-\eta )(p_1+p_2)(t_1-s_0)}\Big [M_0-\frac{\alpha }{p_1}e^{(1-\eta )p_1t}e^{-(1-\eta )(p_1 +p_2)(t_1-s_0)}\Big ]. \end{aligned} \end{aligned}$$

Therefore,

$$\begin{aligned} \begin{aligned} W(t)&< e^{(1-\eta )(p_1+p_2)(t_1-s_0)}\Big [M_0- \frac{\alpha }{p_1}e^{(1-\eta )p_1t}e^{-(1 -\eta )(p_1+p_2)(t_1-s_0)}\Big ], \end{aligned} \end{aligned}$$

for all \(~t\in [0,t_1)\).

Furthermore, it can be proved that

$$\begin{aligned} \begin{aligned} W(t)&< e^{(1-\eta )(p_1+p_2)(t_1-s_0)}\Big [M_0-\frac{\alpha }{p_1}e^{(1-\eta )p_1t}e^{-(1-\eta )(p_1+p_2)(t_1-s_0)}\Big ], \end{aligned} \end{aligned}$$
(64)

for \(t \in [t_1,s_1)\). Otherwise, there is a \(a_2 \in [t_1,s_1)\) to make that

$$\begin{aligned} \widetilde{Q}(a_2)=0,\quad \dot{\widetilde{Q}}(a_2)> 0,\quad \widetilde{Q}(a_2)<0,\quad t\in [t_1,a_2), \end{aligned}$$
(65)

where \(\widetilde{Q}(t)=W(t)- e^{(1-\eta )(p_1+p_2)(t_1-s_0)}\Big [M_0-\frac{\alpha }{p_1}e^{(1-\eta )p_1t}e^{-(1-\eta )(p_1+p_2)(t_1-s_0)}\Big ]\).

Similar to (58), one has

$$\begin{aligned} \begin{aligned} \dot{\widetilde{Q}}(a_2)=0, \end{aligned} \end{aligned}$$

which contradicts the second inequality in (65). Hence, (64)holds.

With the same approach, one can prove that

$$\begin{aligned} \begin{aligned} W(t)&< e^{(1-\eta )(p_1+p_2)(t_1-s_0)}e^{(1-\eta )(p_1+ p_2)(t-s_1)} \\&\quad \Big [M_0-\frac{\alpha }{p_1}e^{(1-\eta )p_1t}e^{- (1-\eta )(p_1+p_2)(t_1-s_0)}e^{-(1 -\eta )(p_1+p_2)(t-t_1)}\Big ]\\&=e^{(1-\eta )(p_1+p_2)[(t_1-s_0)+(t-s_1)]}\Big [M_0-\frac{\alpha }{p_1} e^{(1-\eta )p_1t}e^{-(1-\eta )(p_1+p_2)[(t_1-s_0)+(t-s_1)]}\Big ]. \end{aligned} \end{aligned}$$

for \(t\in [s_1,t_2)\).

With induction method, the following estimation of W(t) for any m can be derived.

For \(t_m \le t <s_m\),

$$\begin{aligned} W(t)< e^{(1-\eta )(p_1+p_2)[\sum _{k=1}^m(t_k-s_{k-1})]}\Big [M_0-\frac{\alpha }{p_1}e^{(1-\eta )p_1t}e^{-(1-\eta )(p_1+p_2)[\sum _{k=1}^m(t_k-s_{k-1})]}\Big ],\nonumber \\ \end{aligned}$$
(66)

and for \(s_m\le t<t_{m+1}\),

$$\begin{aligned} W(t)< & {} e^{(1-\eta )(p_1+p_2)[\sum _{k=1}^m(t_k-s_{k-1})+(t-s_m)]}\Big [M_0-\frac{\alpha }{p_1} \nonumber \\&e^{(1-\eta )p_1t}e^{-(1-\eta )(p_1+p_2)[\sum _{k=1}^m(t_k-s_{k-1})+(t-s_m)]}\Big ]. \end{aligned}$$
(67)

As there is a nonnegative integer m such that \(t_m\le t<t_{m+1}\) for any \(t\ge 0\), the following estimation of W(t) for any t can be deduced by Eqs. (66) and (67).

For \(t_m\le t<s_m\), and according to Definition 2, one has

$$\begin{aligned} \begin{aligned} W(t)&< e^{(1-\eta )(p_1+p_2)[\sum _{k=1}^m(t_k-s_{k-1})]}\Big [M_0-\frac{\alpha }{p_1}e^{(1-\eta )p_1t}e^{-(1-\eta )(p_1+p_2)[\sum _{k=1}^m(t_k-s_{k-1})]}\Big ]\\&= e^{(1-\eta )(p_1+p_2)[\sum _{k=1}^m \frac{t_k-s_{k-1}}{t_k-t_{k-1}}\cdot (t_k-t_{k-1})]}\Big [M_0-\frac{\alpha }{p_1} e^{(1-\eta )p_1t}\\&\quad e^{-(1-\eta )(p_1+p_2)[\sum _{k=1}^m \frac{t_k-s_{k-1}}{t_k-t_{k-1}}\cdot (t_k-t_{k-1})]}\Big ]\\&\le e^{(1-\eta )(p_1+p_2)[\Phi \sum _{k=1}^m (t_k-t_{k-1})]}\Big [M_0-\frac{\alpha }{p_1}e^{(1-\eta )p_1t}e^{-(1-\eta )(p_1+p_2)[\Phi \sum _{k=1}^m (t_k-t_{k-1})]}\Big ]\\&= e^{(1-\eta )(p_1+p_2)\Phi t_m}\Big [M_0-\frac{\alpha }{p_1} e^{(1-\eta )p_1t}e^{-(1-\eta )(p_1+p_2)\Phi t_m}\Big ]\\&\le e^{(1-\eta )(p_1+p_2)\Phi t}\Big [M_0-\frac{\alpha }{p_1} e^{(1-\eta )p_1t}e^{-(1-\eta )(p_1+p_2)\Phi t}\Big ]. \end{aligned} \end{aligned}$$

For \(s_m\le t<t_{m+1}\), and with Lemma 3, one can obtain

$$\begin{aligned} W(t)&< e^{(1-\eta )(p_1+p_2)[\sum _{k=1}^m(t_k-s_{k-1})+(t-s_m)]}\\&\quad \Big [M_0-\frac{\alpha }{p_1}e^{(1-\eta )p_1t}e^{-(1-\eta )(p_1+p_2)[\sum _{k=1}^m(t_k-s_{k-1})+(t-s_m)]}\Big ]\\&= e^{(1-\eta )(p_1+p_2)[\sum _{k=1}^m\frac{t_k-s_{k-1}}{t_k-t_{k-1}}\cdot (t_k-t_{k-1})+\frac{t-s_m}{t-t_m}\cdot (t-t_m)]} \cdot \\&\quad \Big [M_0-\frac{\alpha }{p_1}e^{(1-\eta )p_1t} e^{-(1-\eta )(p_1+p_2)[\sum _{k=1}^m\frac{t_k-s_{k-1}}{t_k-t_{k-1}}\cdot (t_k-t_{k-1})+\frac{t-s_m}{t-t_m}\cdot (t-t_m)]}\Big ]\\&\le e^{(1-\eta )(p_1+p_2)[ \sum _{k=1}^m \frac{t_k-s_{k-1}}{t_k-t_{k-1}} (t_k-t_{k-1})+\frac{t_{m+1}-s_m}{t_{m+1}-t_m}\cdot (t-t_m)]}\cdot \\&\quad \Big [M_0-\frac{\alpha }{p_1}e^{(1-\eta )p_1t}e^{-(1-\eta )(p_1+p_2)[ \sum _{k=1}^m \frac{t_k-s_{k-1}}{t_k-t_{k-1}}(t_k-t_{k-1})+\frac{t_{m+1}-s_m}{t_{m+1}-t_m}\cdot (t-t_m)]}\Big ]\\&\le e^{(1-\eta )(p_1+p_2)\Phi [ \sum _{k=1}^m (t_k-t_{k-1})+(t-t_m)]} \\&\quad \Big [M_0-\frac{\alpha }{p_1}e^{(1-\eta )p_1t}e^{-(1-\eta )(p_1+p_2)\Phi [ \sum _{k=1}^m (t_k-t_{k-1})+(t-t_m)]}\Big ]\\&= e^{(1-\eta )(p_1+p_2)\Phi t} \Big [M_0-\frac{\alpha }{p_1}e^{(1-\eta )p_1t}e^{-(1-\eta )(p_1+p_2)\Phi t}\Big ]. \end{aligned}$$

According to the definition of W(t), one obtains

$$\begin{aligned} \begin{aligned} V^{1-\eta }(t)e^{(1-\eta )p_1 t}&\le e^{(1-\eta )(p_1+p_2)\Phi t}\Big [V^{1-\eta }(0)+\frac{\alpha }{p_1}-\frac{\alpha }{p_1}e^{(1-\eta )p_1 (1-\Phi ) t}e^{-(1-\eta )p_2\Phi t}\Big ]\\&=e^{(1-\eta )(p_1+p_2)\Phi t}\Big [V^{1-\eta }(0)-\frac{\alpha }{p_1}(e^{(1-\eta )p_1(1-\Phi ) t}e^{-(1-\eta )p_2\Phi t}-1)\Big ]. \end{aligned} \end{aligned}$$

The proof is completed. \(\square \)

Proof of Lemma 5

Take \(M_0=V^{1-\eta }(0)\) and \(W(t)=V^{1-\eta }(t)+\alpha {(1-\eta )t}\). Let \(Q(t)=W(t)-M_0\).

In the following, we will prove that

$$\begin{aligned} \dot{Q}(t)\le 0, \end{aligned}$$
(68)

for all \(t \in [0,s_0)\). Otherwise, there is a \(a_0\in [0,s_0)\), to make that

$$\begin{aligned}&Q(a_0)=0,\quad \dot{Q}(a_0)> 0, \end{aligned}$$
(69)
$$\begin{aligned}&Q(t)\le 0,\quad 0\le t<s_0. \end{aligned}$$
(70)

For \(\forall ~t \in [0,s_0)\), one can obtain

$$\begin{aligned} \dot{Q}(t_0)= & {} (1-\eta )V^{-\eta }(t)\dot{V}(t)+\alpha (1-\eta ) \nonumber \\\le & {} (1-\eta )V^{-\eta }(t)(-\alpha V^\eta (t))+\alpha (1-\eta ) \nonumber \\= & {} -\alpha (1-\eta )+\alpha (1-\eta )=0 \end{aligned}$$
(71)

which contradicts the second inequality in (69). Hence, (68) holds.

Let \(H(t)=W(t)-M_0-\alpha (1-\eta )(t-s_0)\). Next, we prove that for \(t\in [s_0,t_1)\)

$$\begin{aligned} \begin{aligned} H(t)=W(t)-M_0-\alpha (1-\eta )(t-s_0)\le 0. \end{aligned} \end{aligned}$$
(72)

For \(\forall ~t \in [s_0,t_1)\), one can get

$$\begin{aligned} \dot{H}(t)= & {} (1-\eta )V^{-\eta }(t_1)\dot{V}(t_1)+\alpha (1-\eta )-\alpha (1-\eta ) \nonumber \\\le & {} \alpha (1-\eta )-\alpha (1-\eta ) \nonumber \\= & {} 0, \end{aligned}$$
(73)

This is to say that H(t) is decreasing in \((s_0,t_1)\). Hence,

$$\begin{aligned} \begin{aligned} H(t)\le H(s_0) =W(s_0)-M_0-\alpha (1-\eta )(s_0-s_0)= W(s_0)-M_0\le 0. \end{aligned} \end{aligned}$$

Hence, Eq. (72) holds.

On the other hand, together with (68), one can obtain

$$\begin{aligned} \begin{aligned} W(t)\le M_0\le M_0+\alpha (1-\eta )(t_1-s_0), \end{aligned} \end{aligned}$$

for \(t\in [0,t_1)\).

Similarly, with the same approach of Eq. (71), one can prove that: for \(t\in [t_1,s_1)\),

$$\begin{aligned} \begin{aligned} W(t)\le M_0+\alpha (1-\eta )(t_1-s_0). \end{aligned} \end{aligned}$$

Let \(Q_1(t)=W(t)-M_0-\alpha (1-\eta )(t_1-s_0)\), it is obtained that \(\dot{Q}_1(t)\le 0\), for \(t\in [t_1,s_1)\). Similar to the proof of Eq. (72), one can verify

$$\begin{aligned} \begin{aligned} W(t)\le M_0+\alpha (1-\eta )(t_1-s_0)+\alpha (1-\eta )(t-t_1), \end{aligned} \end{aligned}$$

for \(t\in [s_1,t_2)\). Take \(H_1(t)=W(t)-M_0+\alpha (1-\eta )(t_1-s_0)-\alpha (1-\eta )(t-t_1)\). Then, one can easy obtain that \(\dot{H}_1(t)\le 0\), for \(t\in [s_1,t_2)\).

With induction method, one can derive the following estimation of W(t) for any integer m.

For \(t_m\le t<s_m\),

$$\begin{aligned} \begin{aligned} W(t)\le M_0+\alpha (1-\eta )\sum _{k=1}^m(t_k-s_{k-1}), \end{aligned} \end{aligned}$$
(74)

and for \(s_m\le t<t_{m+1}\),

$$\begin{aligned} \begin{aligned} W(t)\le M_0+\alpha (1-\eta )\left( \sum _{k=1}^m(t_k-s_{k-1})+(t-s_m)\right) . \end{aligned} \end{aligned}$$
(75)

Since for any \(t\ge 0\), there exists a nonnegative integer m, such that \(t_m\le t<t_{m+1}\) for any \(t\ge 0\), the following estimation of W(t) for any t can be deduced by Eqs. (74) and (75).

For \(t_m\le t<s_m\), and according to Definition 2, one has

$$\begin{aligned} \begin{aligned} W(t)&\le M_0+\alpha (1-\eta )\sum _{k=1}^m(t_k-s_{k-1})\\&= M_0+\alpha (1-\eta )\sum _{k=1}^m \frac{t_k-s_{k-1}}{t_k-t_{k-1}}\cdot (t_k-t_{k-1})\\&\le M_0+\alpha (1-\eta )\Phi \sum _{k=1}^m (t_k-t_{k-1})\\&=M_0+\alpha (1-\eta )\Phi t_m\\&\le M_0+\alpha (1-\eta )\Phi t. \end{aligned} \end{aligned}$$

For \(s_m\le t<t_{m+1}\), and with Lemma 3, one can obtain

$$\begin{aligned} \begin{aligned} W(t)&\le M_0+\alpha (1-\eta )\left( \sum _{k=1}^m(t_k-s_{k-1})+(t-s_m)\right) \\&= M_0+\alpha (1-\eta )\left( \sum _{k=1}^m \frac{t_k-s_{k-1}}{t_k-t_{k-1}} (t_k-t_{k-1})+\frac{t-s_m}{t-t_m}(t-t_m)\right) \\&\le M_0+\alpha (1-\eta )\left( \sum _{k=1}^m \frac{t_k-s_{k-1}}{t_k-t_{k-1}} (t_k-t_{k-1})+\frac{t_{m+1}-s_{m+1}}{t-t_m}(t-t_m)\right) \\&\le M_0+\alpha (1-\eta )\Phi (\sum _{k=1}^m (t_k-t_{k-1})+(t-t_m))\\&=M_0+\alpha (1-\eta )\Phi t \end{aligned} \end{aligned}$$

According to the definition of W(t), one obtains

$$\begin{aligned} \begin{aligned} V^{1-\eta }(t)\le M_0-\alpha (1-\eta )(1-\Phi )t. \end{aligned} \end{aligned}$$

The proof is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Mei, J., Liu, H. et al. Fast Synchronization of Complex Networks via Aperiodically Intermittent Sliding Mode Control. Neural Process Lett 51, 1331–1352 (2020). https://doi.org/10.1007/s11063-019-10145-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-019-10145-2

Keywords

Navigation