Skip to main content
Log in

Optical Trapping and Manipulation Using Optical Fibers

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

An optical trap forms a restoring optical force field to immobilize and manipulate tiny objects. A fiber optical trap is capable of establishing the restoring optical force field using one or a few pieces of optical fiber, and it greatly simplifies the optical setup by removing bulky optical components, such as microscope objectives from the working space. It also inherits other major advantages of optical fibers: flexible in shape, robust against disturbance, and highly integrative with fiber-optic systems and on-chip devices. This review will begin with a concise introduction on the principle of optical trapping techniques, followed by a comprehensive discussion on different types of fiber optical traps, including their structures, functionalities and associated fabrication techniques. A brief outlook to the future development and potential applications of fiber optical traps is given at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ghislain LP, Webb WW. Scanning-force microscope based on an optical trap. Opt Lett. 1993;18:1678–80.

    CAS  Google Scholar 

  2. Nakayama Y, et al. Tunable nanowire nonlinear optical probe. Nature. 2007;447:1098–101.

    CAS  Google Scholar 

  3. Marago OM, et al. Femtonewton force sensing with optically trapped nanotubes. Nano Lett. 2008;8:3211–6.

    CAS  Google Scholar 

  4. Rohrbach A, Tischer C, Neumayer D, Florin EL, Stelzer EHK. Trapping and tracking a local probe with a photonic force microscope. Rev Sci Instrum. 2004;75:2197–210.

    CAS  Google Scholar 

  5. Neuman KC, Nagy A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods. 2008;5:491–505.

    CAS  Google Scholar 

  6. Thurn R, Kiefer W. Raman-microsampling technique applying optical levitation by radiation pressure. Appl Spectrosc. 1984;38:78–83.

    CAS  Google Scholar 

  7. Xie C, Dinno MA, Li YQ. Near-infrared Raman spectroscopy of single optically trapped biological cells. Opt Lett. 2002;27:249–51.

    Google Scholar 

  8. Prikulis J, et al. Optical spectroscopy of single trapped metal nanoparticles in solution. Nano Lett. 2004;4:115–8.

    CAS  Google Scholar 

  9. Wang F, et al. Resolving stable axial trapping points of nanowires in an optical tweezers using photoluminescence mapping. Nano Lett. 2013;13:1185–91.

    CAS  Google Scholar 

  10. Lang MJ, Fordyce PM, Engh AM, Neuman KC, Block SM. Simultaneous, coincident optical trapping and single-molecule fluorescence. Nat Methods. 2004;1:133–9.

    CAS  Google Scholar 

  11. Galajda P, Ormos P. Complex micromachines produced and driven by light. Appl Phys Lett. 2001;78:249–51.

    CAS  Google Scholar 

  12. Guffey MJ, Scherer NF. All-optical patterning of Au nanoparticles on surfaces using optical traps. Nano Lett. 2010;10:4302–8.

    CAS  Google Scholar 

  13. Ito S, Yoshikawa H, Masuhara H. Laser manipulation and fixation of single gold nanoparticles in solution at room temperature. Appl Phys Lett. 2002;80:482–4.

    CAS  Google Scholar 

  14. Gargiulo J, et al. Accuracy and mechanistic details of optical printing of single Au and Ag nanoparticles. ACS Nano. 2017;11:9678–88.

    CAS  Google Scholar 

  15. Pauzauskie PJ, et al. Optical trapping and integration of semiconductor nanowire assemblies in water. Nat Mater. 2006;5:97–101.

    CAS  Google Scholar 

  16. Agarwal R, et al. Manipulation and assembly of nanowires with holographic optical traps. Opt Express. 2005;13:8906–12.

    Google Scholar 

  17. Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R, Block SM. Direct observation of base-pair stepping by RNA polymerase. Nature. 2005;438:460–5.

    CAS  Google Scholar 

  18. Perkins TT, Quake SR, Smith DE, Chu S. Relaxation of a single DNA molecule observed by optical microscopy. Science. 1994;264:822–6.

    CAS  Google Scholar 

  19. Smith SB, Cui Y, Bustamante C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science. 1996;271:795–9.

    CAS  Google Scholar 

  20. Wang MD, Yin H, Landick R, Gelles J, Block SM. Stretching DNA with optical tweezers. Biophys J. 1997;72:1335–46.

    CAS  Google Scholar 

  21. Liphardt J, Onoa B, Smith SB, Tinoco I Jr, Bustamante C. Reversible unfolding of single RNA molecules by mechanical force. Science. 2001;292:733–7.

    CAS  Google Scholar 

  22. Liphardt J, Dumont S, Smith SB, Tinoco I Jr, Bustamante C. Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science. 2002;296:1832–5.

    CAS  Google Scholar 

  23. Svoboda K, Schmidt CF, Schnapp BJ, Block SM. Direct observation of kinesin stepping by optical trapping interferometry. Nature. 1993;365:721–7.

    CAS  Google Scholar 

  24. Finer JT, Simmons RM, Spudich JA. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature. 1994;368:113–9.

    CAS  Google Scholar 

  25. Molloy JE, Burns JE, Kendrick-Jones J, Tregear RT, White DC. Movement and force produced by a single myosin head. Nature. 1995;378:209–12.

    CAS  Google Scholar 

  26. Wen JD, et al. Following translation by single ribosomes one codon at a time. Nature. 2008;452:598–603.

    CAS  Google Scholar 

  27. Aubin-Tam M-E, Olivares AO, Sauer RT, Baker TA, Lang MJ. Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine. Cell. 2011;145:257–67.

    CAS  Google Scholar 

  28. Maillard RA, et al. ClpX(P) generates mechanical force to unfold and translocate its protein substrates. Cell. 2011;145:459–69.

    CAS  Google Scholar 

  29. Pang Y, Gordon R. Optical trapping of a single protein. Nano Lett. 2012;12:402–6.

    CAS  Google Scholar 

  30. Ashkin A. Acceleration and trapping of particles by radiation pressure. Phys Rev Lett. 1970;24:156.

    CAS  Google Scholar 

  31. Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett. 1986;11:288.

    CAS  Google Scholar 

  32. Constable A, Kim J, Mervis J, Zarinetchi F, Prentiss M. Demonstration of a fiber-optical light-force trap. Opt Lett. 1993;18:1867–9.

    CAS  Google Scholar 

  33. Taguchi K, Ueno H, Hiramatsu T, Ikeda M. Optical trapping of dielectric particle and biological cell using optical fibre. Electron Lett. 1997;33:413–4.

    Google Scholar 

  34. La Porta A, Wang MD. Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. Phys Rev Lett. 2004;92:190801.

    Google Scholar 

  35. Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature. 2003;424:824–30.

    CAS  Google Scholar 

  36. Juan ML, Righini M, Quidant R. Plasmon nano-optical tweezers. Nat Photonics. 2011;5:349–56.

    CAS  Google Scholar 

  37. Grier DG. A revolution in optical manipulation. Nature. 2003;424:810–6.

    CAS  Google Scholar 

  38. Neuman KC, Block SM. Optical trapping. Rev Sci Instrum. 2004;75:2787–809.

    CAS  Google Scholar 

  39. Bradac C. Nanoscale optical trapping: a review. Adv Opt Mater. 2018;6:1800005.

    Google Scholar 

  40. Jess PRT, et al. Dual beam fibre trap for Raman microspectroscopy of single cells. Opt Express. 2006;14:5779–91.

    CAS  Google Scholar 

  41. Blakely JT, Gordon R, Sinton D. Flow-dependent optofluidic particle trapping and circulation. Lab Chip. 2008;8:1350–6.

    CAS  Google Scholar 

  42. De Coster D, et al. Mass-manufacturable polymer microfluidic device for dual fiber optical trapping. Opt Express. 2015;23:30991–1009.

    Google Scholar 

  43. Bellini N, et al. Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells. Opt Express. 2010;18:4679–88.

    CAS  Google Scholar 

  44. Lyons E, Sonek G. Confinement and bistability in a tapered hemispherically lensed optical fiber trap. Appl Phys Lett. 1995;66:1584–6.

    CAS  Google Scholar 

  45. Chen X, Xiao G, Luo H, Xiong W, Yang K. Dynamics analysis of microsphere in a dual-beam fiber-optic trap with transverse offset. Opt Express. 2016;24:7575–84.

    Google Scholar 

  46. Kolb T, Albert S, Haug M, Whyte G. Dynamically reconfigurable fibre optical spanner. Lab Chip. 2014;14:1186–90.

    CAS  Google Scholar 

  47. Black BJ, Mohanty SK. Fiber-optic spanner. Opt Lett. 2012;37:5030–2.

    CAS  Google Scholar 

  48. Kreysing MK, et al. The optical cell rotator. Opt Express. 2008;16:16984–92.

    CAS  Google Scholar 

  49. Kreysing M, et al. Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cells. Nat Commun. 2014;5:5481.

    CAS  Google Scholar 

  50. Tao G, et al. Digital design of multimaterial photonic particles. Proc Natl Acad Sci USA. 2016;113:6839–44.

    CAS  Google Scholar 

  51. Kaufman JJ, et al. Structured spheres generated by an in-fibre fluid instability. Nature. 2012;487:463.

    CAS  Google Scholar 

  52. Singer W, Frick M, Bernet S, Ritsch-Marte M. Self-organized array of regularly spaced microbeads in a fiber-optical trap. J Opt Soc Am B. 2003;20:1568–74.

    CAS  Google Scholar 

  53. Kawano M, Blakely JT, Gordon R, Sinton D. Theory of dielectric micro-sphere dynamics in a dual-beam optical trap. Opt Express. 2008;16:9306–17.

    CAS  Google Scholar 

  54. Taguchi K, Atsuta K, Nakata T, Ikeda M. Single laser beam fiber optic trap. Opt Quantum Electron. 2001;33:99–106.

    Google Scholar 

  55. Taguchi K, Atsuta K, Nakata T, Ikeda R. Levitation of a microscopic object using plural optical fibers. Opt Commun. 2000;176:43–7.

    CAS  Google Scholar 

  56. Liu Y, Yu M. Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing. Opt Express.2009;17:13624–38.

    CAS  Google Scholar 

  57. Liu Y, Yu M. Multiple traps created with an inclined dual-fiber system. Opt Express. 2009;17:21680–90.

    CAS  Google Scholar 

  58. Liu Z, et al. Micro particle launcher/cleaner based on optical trapping technology. Opt Express. 2015;23:8650–8.

    CAS  Google Scholar 

  59. Decombe J-B, Huant S, Fick J. Single and dual fiber nano-tip optical tweezers: trapping and analysis. Opt Express. 2013;21:30521–31.

    Google Scholar 

  60. Lemenager G, et al. Size-dependent trapping behavior and optical emission study of NaYF4 nanorods in optical fiber tip tweezers. Opt Express. 2018;26:32156–67.

    CAS  Google Scholar 

  61. Liu Z, Guo C, Yang J, Yuan L. Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application. Opt Express. 2006;14:12510–6.

    Google Scholar 

  62. Xin HB, Li YY, Li LS, Xu R, Li BJ. Optofluidic manipulation of Escherichia coli in a microfluidic channel using an abruptly tapered optical fiber. Appl Phys Lett. 2013;103:033703.

    Google Scholar 

  63. Li Y, Xin H, Liu X, Li B. Non-contact intracellular binding of chloroplasts in vivo. Sci Rep. 2015;5:10925.

    CAS  Google Scholar 

  64. Xin H, et al. Single upconversion nanoparticle-bacterium cotrapping for single-bacterium labeling and analysis. Small. 2017;13:1603418.

    Google Scholar 

  65. Xin H, Xu R, Li B. Optical trapping, driving, and arrangement of particles using a tapered fibre probe. Sci Rep. 2012;2:818.

    Google Scholar 

  66. Hu Z, Wang J, Liang J. Experimental measurement and analysis of the optical trapping force acting on a yeast cell with a lensed optical fiber probe. Opt Laser Technol.2007;39:475–80.

    CAS  Google Scholar 

  67. Hu ZH, Wang J, Liang JW. Manipulation and arrangement of biological and dielectric particles by a lensed fiber probe. Opt Express. 2004;12:4123–8.

    Google Scholar 

  68. Liu Z, et al. Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment. Opt Lett. 2013;38:2617–20.

    Google Scholar 

  69. Chen S, et al. Optical manipulation of biological particles using LP21 mode in fiber. J Opt. 2014;16:125302.

    Google Scholar 

  70. Zhang Y, et al. Multi-dimensional manipulation of yeast cells using a LP11 mode beam. J Lightwave Technol. 2014;32:1098–103.

    Google Scholar 

  71. Yuan L, Liu Z, Yang J, Guan C. Twin-core fiber optical tweezers. Opt Express. 2008;16:4559–66.

    Google Scholar 

  72. Velazquez-Benitez AM, et al. Optical trapping and micromanipulation with a photonic lantern-mode multiplexer. Opt Lett. 2018;43:1303–6.

    CAS  Google Scholar 

  73. Lee SR, et al. All-silica fiber Bessel-like beam generator and its applications in longitudinal optical trapping and transport of multiple dielectric particles. Opt Express. 2010;18:25299–305.

    CAS  Google Scholar 

  74. Kim J, et al. Fourier optics along a hybrid optical fiber for Bessel-like beam generation and its applications in multiple-particle trapping. Opt Lett. 2012;37:623–5.

    Google Scholar 

  75. Zhang Y, et al. 3-dimensional dark traps for low refractive index bio-cells using a single optical fiber Bessel beam. Opt Lett. 2018;43:2784–6.

    CAS  Google Scholar 

  76. Zhang Y, et al. Multiple particles 3-d trap based on all-fiber bessel optical probe. J Lightwave Technol. 2017;35:3849–53.

    CAS  Google Scholar 

  77. McQueen CA, Arlt J, Dholakia K. An experiment to study a “nondiffracting” light beam. Am J Phys. 1999;67:912–5.

    Google Scholar 

  78. Chen ZG, Taflove A, Backman V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Opt Express. 2004;12:1214–20.

    Google Scholar 

  79. Wang Z, et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat Commun. 2011;2:218.

    Google Scholar 

  80. Li YC, et al. Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet. Light Sci Appl. 2016;5:e16176.

    CAS  Google Scholar 

  81. Li Y, et al. Living nanospear for near-field optical probing. ACS Nano. 2018;12:10703–11.

    CAS  Google Scholar 

  82. Li Y, et al. Trapping and detection of nanoparticles and cells using a parallel photonic nanojet array. ACS Nano. 2016;10:5800–8.

    CAS  Google Scholar 

  83. Li X, Chen ZG, Taflove A, Backman V. Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets. Opt Express. 2005;13:526–33.

    Google Scholar 

  84. Alessandri I, Bontempi N, Depero LE. Colloidal lenses as universal Raman scattering enhancers. RSC Adv. 2014;4:38152–8.

    CAS  Google Scholar 

  85. Yang H, Cornaglia M, Gijs MA. Photonic nanojet array for fast detection of single nanoparticles in a flow. Nano Lett. 2015;15:1730–5.

    CAS  Google Scholar 

  86. Xin HB, Li BJ. Optical orientation and shifting of a single multiwalled carbon nanotube. Light Sci Appl. 2014;3:e205.

    CAS  Google Scholar 

  87. Xin H, Li Y, Liu X, Li B. Escherichia coli-based biophotonic waveguides. Nano Lett. 2013;13:3408–13.

    CAS  Google Scholar 

  88. Xin H, et al. Optofluidic realization and retaining of cell–cell contact using an abrupt tapered optical fibre. Sci Rep. 2013;3:1993.

    Google Scholar 

  89. Xin HB, Li YC, Li BJ. Controllable patterning of different cells via optical assembly of 1D periodic cell structures. Adv Funct Mater. 2015;25:2816–23.

    CAS  Google Scholar 

  90. Xin H, Liu Q, Li B. Non-contact fiber-optical trapping of motile bacteria: dynamics observation and energy estimation. Sci Rep. 2014;4:6576.

    CAS  Google Scholar 

  91. Xin HB, Xu R, Li BJ. Optical formation and manipulation of particle and cell patterns using a tapered optical fiber. Laser Photonics Rev. 2013;7:801–9.

    CAS  Google Scholar 

  92. Xin HB, Li YC, Li BJ. Bacteria-based branched structures for bionanophotonics. Laser Photonics Rev. 2015;9:554–63.

    CAS  Google Scholar 

  93. Chen ZG, Taflove A, Backman V. Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres. Opt Lett. 2006;31:389–91.

    Google Scholar 

  94. Li Y, et al. Enhancing upconversion fluorescence with a natural bio-microlens. ACS Nano. 2017;11:10672–80.

    CAS  Google Scholar 

  95. Tao G, et al. Infrared fibers. Adv Opt Photonics. 2015;7:379–458.

    CAS  Google Scholar 

  96. Liberale C, et al. Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation. Nat Photonics. 2007;1:723–7.

    CAS  Google Scholar 

  97. Bragheri F, Minzioni P, Liberale C, Di Fabrizio E, Cristiani I. Design and optimization of a reflection-based fiber-optic tweezers. Opt Express. 2008;16:17647–53.

    CAS  Google Scholar 

  98. Anastasiadi G, Leonard M, Paterson L, Macpherson WN. Fabrication and characterization of machined multi-core fiber tweezers for single cell manipulation. Opt Express. 2018;26:3557–67.

    CAS  Google Scholar 

  99. Deng HC, et al. Fiber-based optical gun for particle shooting. ACS Photonics. 2017;4:642–8.

    CAS  Google Scholar 

  100. Sun HB, Kawata S. Two-photon photopolymerization and 3D lithographic microfabrication. Nmr 3d Anal Photopolym. 2004;170:169–273.

    CAS  Google Scholar 

  101. Liberale C, et al. Micro-optics fabrication on top of optical fibers using two-photon lithography. IEEE Photonics Technol Lett. 2010;22:474–6.

    Google Scholar 

  102. Liberale C, et al. Integrated microfluidic device for single-cell trapping and spectroscopy. Sci Rep. 2013;3:1258.

    CAS  Google Scholar 

  103. Nylk J, et al. Development of a graded index microlens based fiber optical trap and its characterization using principal component analysis. Biomed Opt Express. 2015;6:1512–9.

    CAS  Google Scholar 

  104. Kasztelanic R, et al. Integrating free-form nanostructured GRIN microlenses with single-mode fibers for optofluidic systems. Sci Rep. 2018;8:12.

    Google Scholar 

  105. Mobini E, Mafi A. Design of a wavelength-tunable optical tweezer using a graded-index multimode optical fiber. J Lightwave Technol. 2017;35:3854–61.

    CAS  Google Scholar 

  106. Gong Y, et al. Graded-index fiber tip optical tweezers: numerical simulation and trapping experiment. Opt Express. 2013;21:16181–90.

    Google Scholar 

  107. Gong Y, et al. Graded-index optical fiber tweezers with long manipulation length. Opt Express. 2014;22:25267–76.

    Google Scholar 

  108. Gong Y, et al. Optofluidic tunable manipulation of microparticles by integrating graded-index fiber taper with a microcavity. Opt Express. 2015;23:3762–9.

    CAS  Google Scholar 

  109. Dholakia K, Čižmár T. Shaping the future of manipulation. Nat Photonics. 2011;5:335–42.

    CAS  Google Scholar 

  110. Cizmar T, Dholakia K. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt Express. 2011;19:18871–84.

    CAS  Google Scholar 

  111. Bianchi S, Di Leonardo R. A multi-mode fiber probe for holographic micromanipulation and microscopy. Lab Chip. 2012;12:635–9.

    CAS  Google Scholar 

  112. Leite IT, et al. Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre. Nat Photonics. 2017;12:33–9.

    Google Scholar 

  113. Marago OM, Jones PH, Gucciardi PG, Volpe G, Ferrari AC. Optical trapping and manipulation of nanostructures. Nat Nanotechnol. 2013;8:807–19.

    CAS  Google Scholar 

  114. Pang Y, Gordon R. Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film. Nano Lett. 2011;11:3763–7.

    CAS  Google Scholar 

  115. Yoon SJ, et al. Non-fluorescent nanoscopic monitoring of a single trapped nanoparticle via nonlinear point sources. Nat Commun. 2018;9:2218.

    Google Scholar 

  116. Juan ML, Gordon R, Pang Y, Eftekhari F, Quidant R. Self-induced back-action optical trapping of dielectric nanoparticles. Nat Phys. 2009;5:915–9.

    CAS  Google Scholar 

  117. Berthelot J, et al. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nat Nanotechnol. 2014;9:295–9.

    CAS  Google Scholar 

  118. Gelfand RM, Wheaton S, Gordon R. Cleaved fiber optic double nanohole optical tweezers for trapping nanoparticles. Opt Lett. 2014;39:6415–7.

    Google Scholar 

  119. El Eter A, et al. Fiber-integrated optical nano-tweezer based on a bowtie-aperture nano-antenna at the apex of a SNOM tip. Opt Express. 2014;22:10072–80.

    Google Scholar 

  120. Ehtaiba JM, Gordon R. Template-stripped nanoaperture tweezer integrated with optical fiber. Opt Express. 2018;26:9607–13.

    CAS  Google Scholar 

  121. Gordon R. Proposal for superfocusing at visible wavelengths using radiationless interference of a plasmonic array. Phys Rev Lett. 2009;102:207402.

    CAS  Google Scholar 

  122. Liu Y, Xu H, Stief F, Zhitenev N, Yu M. Far-field superfocusing with an optical fiber based surface plasmonic lens made of nanoscale concentric annular slits. Opt Express. 2011;19:20233–43.

    Google Scholar 

  123. Liu Y, Stief F, Yu M. Subwavelength optical trapping with a fiber-based surface plasmonic lens. Opt Lett. 2013;38:721–3.

    CAS  Google Scholar 

  124. Knight JC, Broeng J, Birks TA, Russell PSJ. Photonic band gap guidance in optical fibers. Science. 1998;282:1476–8.

    CAS  Google Scholar 

  125. Russell P. Photonic crystal fibers. Science. 2003;299:358–62.

    CAS  Google Scholar 

  126. Grass D, Fesel J, Hofer SG, Kiesel N, Aspelmeyer M. Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers. Appl Phys Lett. 2016;108:221103.

    Google Scholar 

  127. Benabid F, Knight J, Russell PSJ. Particle levitation and guidance in hollow-core photonic crystal fiber. Opt Express. 2002;10:1195–203.

    CAS  Google Scholar 

  128. Bykov DS, Schmidt OA, Euser TG, Russell PSJ. Flying particle sensors in hollow-core photonic crystal fibre. Nat Photonics. 2015;9:461–5.

    CAS  Google Scholar 

  129. Roberts P, et al. Ultimate low loss of hollow-core photonic crystal fibres. Opt Express. 2005;13:236–44.

    CAS  Google Scholar 

  130. Gao SF, et al. Hollow-core conjoined-tube negative-curvature fibre with ultralow loss. Nat Commun. 2018;9:2828.

    Google Scholar 

  131. Zeltner R, Bykov DS, Xie S, Euser TG, Russell PSJ. Fluorescence-based remote irradiation sensor in liquid-filled hollow-core photonic crystal fiber. Appl Phys Lett. 2016;108:231107.

    Google Scholar 

  132. Zeltner R, Pennetta R, Xie S, Russell PSJ. Flying particle microlaser and temperature sensor in hollow-core photonic crystal fiber. Opt Lett. 2018;43:1479–82.

    CAS  Google Scholar 

  133. Mandal S, Erickson D. Optofluidic transport in liquid core waveguiding structures. Appl Phys Lett. 2017;90:184103.

    Google Scholar 

  134. Garbos M, Euser T, Russell PSJ. Optofluidic immobility of particles trapped in liquid-filled hollow-core photonic crystal fiber. Opt Express. 2011;19:19643–52.

    CAS  Google Scholar 

  135. Euser T, Garbos M, Chen J, Russell PSJ. Precise balancing of viscous and radiation forces on a particle in liquid-filled photonic bandgap fiber. Opt Lett. 2009;34:3674–6.

    CAS  Google Scholar 

  136. Bykov DS, et al. Long-range optical trapping and binding of microparticles in hollow-core photonic crystal fibre. Light Sci Appl. 2018;7:7.

    Google Scholar 

  137. Xie S, Pennetta R, Russell PS. Self-alignment of glass fiber nanospike by optomechanical back-action in hollow-core photonic crystal fiber. Optica. 2016;3:277–82.

    CAS  Google Scholar 

  138. Zeltner R, Xie SR, Pennetta R, Russell PS. Broadband, lensless, and optomechanically stabilized coupling into microfluidic hollow-core photonic crystal fiber using glass nanospike. ACS Photonics. 2017;4:378–83.

    CAS  Google Scholar 

  139. Pennetta R, et al. Fresnel-reflection-free self-aligning nanospike interface between a step-index fiber and a hollow-core photonic-crystal-fiber gas cell. Phys Rev Appl. 2017;8:014014.

    Google Scholar 

  140. Pennetta R, Xie S, Russell PS. Tapered glass-fiber microspike: high-Q flexural wave resonator and optically driven knudsen pump. Phys Rev Lett. 2016;117:273901.

    Google Scholar 

  141. Soong CY, Li WK, Liu CH, Tzeng PY. Theoretical analysis for photophoresis of a microscale hydrophobic particle in liquids. Opt Express. 2010;18:2168–82.

    CAS  Google Scholar 

  142. Xin HB, Li BJ. Fiber-based optical trapping and manipulation. Front Optoelectron. 2019;12:97–110.

    Google Scholar 

  143. Rong Q, Zhou Y, Yin X, Shao Z, Qiao X. Higher-order micro-fiber modes for Escherichia coli manipulation using a tapered seven-core fiber. Biomed Opt Express. 2017;8:4096–107.

    CAS  Google Scholar 

  144. Xin H, Lei H, Zhang Y, Li X, Li B. Photothermal trapping of dielectric particles by optical fiber-ring. Opt Express. 2011;19:2711–9.

    CAS  Google Scholar 

  145. Zhang Y, et al. Microparticles controllable accumulation, arrangement, and spatial shaping performed by tapered-fiber-based laser-induced convection flow. Sci Rep. 2017;7:14378.

    Google Scholar 

  146. Xin H, Li X, Li B. Massive photothermal trapping and migration of particles by a tapered optical fiber. Opt Express. 2011;19:17065–74.

    CAS  Google Scholar 

  147. Li Z, et al. High throughput trapping and arrangement of biological cells using self-assembled optical tweezer. Opt Express. 2018;26:34665–74.

    CAS  Google Scholar 

  148. Chen JJ, Kang ZW, Kong SK, Ho HP. Plasmonic random nanostructures on fiber tip for trapping live cells and colloidal particles. Opt Lett. 2015;40:3926–9.

    CAS  Google Scholar 

  149. Lei HX, Zhang Y, Li BJ. Particle separation in fluidic flow by optical fiber. Opt Express. 2012;20:1292–300.

    CAS  Google Scholar 

  150. Nicholson JW, Windeler RS, Digiovanni DJ. Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces. Opt Express. 2007;15:9176–83.

    CAS  Google Scholar 

  151. Zhong MC, Wei XB, Zhou JH, Wang ZQ, Li YM. Trapping red blood cells in living animals using optical tweezers. Nat Commun. 2013;4:1768.

    Google Scholar 

  152. Flusberg BA, et al. Fiber-optic fluorescence imaging. Nat Methods. 2005;2:941.

    CAS  Google Scholar 

  153. Al Balushi AA, et al. Label-free free-solution nanoaperture optical tweezers for single molecule protein studies. Analyst. 2015;140:4760–78.

    CAS  Google Scholar 

  154. Koenderink AF. Single-photon nanoantennas. ACS Photonics. 2017;4:710–22.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funds from National Natural Science Foundation of China (Grant number: 11874164), the Innovation Fund of Wuhan National Laboratory for Optoelectronics and 1000 Talent Youth Program. We also appreciate valuable discussions with Prof. Guangming Tao from Huazhong University of Science and Technology, Dr. Shangran Xie from Max Planck Institute for the Science of Light, Prof. Guanghui Wang from Nanjing University, Prof. Hongbao Xin and Prof. Baojun Li from Jinan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanjie Pang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, Y., Wu, D. & Pang, Y. Optical Trapping and Manipulation Using Optical Fibers. Adv. Fiber Mater. 1, 83–100 (2019). https://doi.org/10.1007/s42765-019-00009-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-019-00009-8

Keywords

Navigation