Skip to main content
Log in

Weighted Calderón-Zygmund Estimates for Weak Solutions of Quasi-Linear Degenerate Elliptic Equations

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

This paper studies regularity estimates in Sobolev spaces for weak solutions of a class of degenerate and singular quasi-linear elliptic problems of the form div[A(x,u,∇u)] = div[F] with non-homogeneous Dirichlet boundary conditions over bounded non-smooth domains. The coefficients A could be be singular, degenerate or both in x in the sense that they behave like some weight function μ, which is in the A2 class of Muckenhoupt weights. Global and interior weighted W1,p(Ω,ω)-regularity estimates are established for weak solutions of these equations with some other weight function ω. The results obtained are even new for the case μ = 1 because of the dependence on the solution u of A. In case of linear equations, our W1,p-regularity estimates can be viewed as the Sobolev’s counterpart of the Hölder’s regularity estimates established by B. Fabes, C. E. Kenig, and R. P. Serapioni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adimurthi, K., Mengesha, T., Phuc, N.C.: Gradient weighted norm inequalities for linear elliptic equations with discontinuous coefficients. To appear in Differential and Integral Equations, arXiv:1806.00423

  2. Bölegein, V.: Global Calderón - Zygmund theory for nonlinear parabolic system. Calc. Var. 51, 555–596 (2014)

    Article  MathSciNet  Google Scholar 

  3. Byun, S., Wang, L.: Nonlinear gradient estimates for elliptic equations of general type. Calc. Var. 45(34), 403–419 (2012)

    Article  MathSciNet  Google Scholar 

  4. Byun, S. -S.: Parabolic equations with BMO coefficients in Lipschitz domains. J. Differential Equations 209(2), 229–265 (2005)

    Article  MathSciNet  Google Scholar 

  5. Byun, S.-S., Wang, L.: Parabolic equations in Reifenberg domains. Arch. Ration. Mech. Anal. 176(2), 271–301 (2005)

    Article  MathSciNet  Google Scholar 

  6. Byun, S.-S., Wang, L.: Elliptic equations with, BMO coefficients in Reifenberg domains. Commun. Pure Appl. Math. 57(10), 1283–1310 (2004)

    Article  MathSciNet  Google Scholar 

  7. Caffarelli, L.A., Peral, I.: On W1,p estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. 51(1), 1–21 (1998)

    Article  Google Scholar 

  8. Cao, D., Mengesha, T., Phan, T.: Weighted W1,p-estimates for weak solutions of degenerate and singular elliptic equations. Indiana University Mathematics Journal, to appear, arXiv:1612.05583

  9. Chiarenza, F., Frasca, M., Longo, P.: Interior W2,p estimates for nondivergence elliptic equations with discontinuous coefficients. Ricerche Mat. 40, 149–168 (1991)

    MathSciNet  MATH  Google Scholar 

  10. Coifman, R.R., Fefferman, C.: Weighted norm inequalities for maximal functions and singular integrals. Stud. Math. 51, 241–250 (1974)

    Article  MathSciNet  Google Scholar 

  11. Cruz-Uribe, D.: New proofs of two-weight norm inequalities for the maximal operator. Georgian Math. J. 7(1), 33–42 (2000)

    Article  MathSciNet  Google Scholar 

  12. Di Fazio, G., Ragusa, M.A.: Interior estimates in Morrey spaces for stong to non divergence form equations with discontinuous coefficients. J. Funct. Anal. 112, 241–256 (1993)

    Article  MathSciNet  Google Scholar 

  13. Di Fazio, G.: Lp estimates for divergence form elliptic equations with discontinuous coefficients. Boll. Un. Mat. Ital. A 10 (1996)

  14. Fanciullo, G., Di Fazio M.S., Zamboni, P.: Interior Lp estimates for degenerate elliptic equations in divergence form with VMO coefficients. Differential Integral Equations 25(7–8), 619–628 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Fabes, E.B., Kenig, C.E., Serapioni, R.P.: The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differential Equations 7(1), 77–116 (1982)

    Article  MathSciNet  Google Scholar 

  16. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Dover, New York (2006)

    MATH  Google Scholar 

  17. Hoang, L.T., Nguyen, T.V., Phan, T.V.: Gradient estimates global existence of smooth solutions to a cross-diffusion system. SIAM J. Math Anal 47(3), 2122–2177 (2015)

    Article  MathSciNet  Google Scholar 

  18. Hunt, R.A., Kurtz, D.S., Neugebauer, C.J.: A note on the equivalence of Ap and Sawyer’s condition for equal weights. Conference on harmonic analysis in honor of Antoni Zygmund, vol. I, II (Chicago, Ill., 1981), pp. 156–158

  19. Garcia-Cuerva, J.: Weighted Hp-spaces, Thesis (Ph.D.) Washington University in St. Louis (1975)

  20. Garcia-Cuerva, J.: Weighted hp spaces. Dissertationes Math. (Rozprawy Mat.) 162 (1979)

  21. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer, Berlin (2001)

    MATH  Google Scholar 

  22. Gutiérrez, C., Wheden, R.: Harnack’s inequality for degenerate parabolic equations. Commun. Partial Differential Equations 16(4–5), 745–770 (1991)

    Article  MathSciNet  Google Scholar 

  23. Kim, D., Krylov, N.V.: Elliptic differential equations with coefficients measurable with respect to one variable and VMO with respect to the others. SIAM J. Math. Anal. 39, 489–506 (2007)

    Article  MathSciNet  Google Scholar 

  24. Kinnunen, J., Zhou, S.: A local estimate for nonlinear equations with discontinuous coefficients. Commun. Partial Differential Equations 24, 2043–2068 (1999)

    Article  MathSciNet  Google Scholar 

  25. Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces. Graduate Studies in Mathematics, 96. American Mathematical Society, Providence, RI (2008)

  26. Maugeri, A., Palagachev, D.K., Softova, L.G.: Elliptic and Parabolic Equations with Discontinuous Coefficients Mathematical Research, vol. 109. Wiley, Berlin (2000)

    Book  Google Scholar 

  27. Mengesha, T., Phuc, N.C.: Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains. J. of Diff. Eqns 250(1), 1485–2507 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Mengesha, T., Phuc, N.C.: Global estimates for quasilinear elliptic equations on Reifenberg flat domains. Arch. Ration. Mech. Anal. 203, 189–216 (2011)

    Article  MathSciNet  Google Scholar 

  29. Meyers, N.G.: An Lp-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. 17(3), 189–206 (1963)

    MATH  Google Scholar 

  30. Monticelli, D.D., Rodney, S., Wheeden, R.L.: Harnack’s inequality and Hölder continuity for weak solutions of degenerate quasilinear equations with rough coefficients. Nonlinear Anal. 126, 69–114 (2015)

    Article  MathSciNet  Google Scholar 

  31. Monticelli, D.D., Rodney, S., Wheeden, R.L.: Boundedness of weak solutions of degenerate quasilinear equations with rough coefficients. Differential Integral Equations 25(1–2), 143–200 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Muckenhoupt, B., Wheeden, R.L.: Weighted bounded mean oscillation and the Hilbert transform. Studia Mathematica, T. LIV (1976)

  33. Muckenhoupt, B., Wheeden, R.L.: On the Dual of Weighted H1 of the Half-Space. Studia Mathematica, T. LXIII (1978)

  34. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 165, 207–226 (1972)

    Article  MathSciNet  Google Scholar 

  35. Murthy, M.K.V., Stampacchia, G.: Boundary value problems for some degenerate-elliptic operators. Ann. Mat. Pura Appl. 80(4), 1–122 (1968)

    Article  MathSciNet  Google Scholar 

  36. Nguyen, T.: Interior Calderón-Zygmund estimates for solutions to general parabolic equations of p-Laplacian type. Calc. Var. 56, 173 (2017). https://doi.org/10.1007/s00526-017-1265-y

    Article  Google Scholar 

  37. Nguyen, T., Phan, T.: Interior gradient estimates for quasilinear elliptic equations. Calc. Var. 55, 59 (2016). https://doi.org/10.1007/s00526-016-0996-5

    Article  MathSciNet  Google Scholar 

  38. Nyström, K., Persson, H., Sande, O.: Boundary estimates for solutions to linear degenerate parabolic equations. J. Differential Equations 259(8), 3577–3614 (2015)

    Article  MathSciNet  Google Scholar 

  39. Sawyer, E.: A characterization of a two weighted norm inequality for maximal Operators. Studia Mathematica, T. LXXV (1982)

  40. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis III. Princeton University Press, Princeton (1993)

    Google Scholar 

  41. Surnachev, M.: A Harnack inequality for weighted degenerate parabolic equations. J. Differential Equations 248(8), 2092–2129 (2010)

    Article  MathSciNet  Google Scholar 

  42. Stredulinsky, E.: Weighted inequalities and applications to degenerate elliptic partial differential eequations. Ph. D. Thesis, Indiana University (1981)

  43. Verbitsky, I.E.: Weighted norm inequalities for maximal operators and Pisier’s theorem on factorization through Lp,. Integr. Equ. Oper. Theory 15(1), 124–153 (1992)

    Article  Google Scholar 

  44. Wang, L.: A geometric approach to the Calderón-Zygmund estimates. Acta. Math. Sin. (Engl. Ser.) 19, 381–396 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

T. Phan’s research is partly supported by the Simons Foundation, grant # 354889. The author would like to thanks anonymous referees for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuoc Phan.

Appendix : Proof of Lemma 4

Appendix : Proof of Lemma 4

Proof

We follow the method used in [6, 27] with some modifications fitting to our setting. For each xC, let us define

$$\phi(\rho) = \frac{\omega(C\cap B_{\rho}(x))}{\omega(B_{\rho}(x))}. $$

By the Lebesgue Differentiation Theorem, for almost every xC, ϕ is continuous and \(\phi (0) = \displaystyle {\lim _{\rho \rightarrow 0^{+}} \phi (\rho )} = 1\). Moreover, by (i), ϕ(r0) < 𝜖. Therefore, for almost every xC, there is 0 < ρx < r0 such that

$$ \begin{array}{ll} \omega(C \cap B_{\rho_{x}}(x)) & = \epsilon \omega (B_{\rho_{x}}(x)), \quad \text{and} \\ \omega(C\cap B_{\rho}(x)) & < \epsilon \omega (B_{\rho}(x)), \quad \rho > \rho_{x}. \end{array} $$
(A.1)

Now, observe that the family of balls \(\{B_{\rho _{x}}(x)\}_{x \in C}\) covers C. Therefore, by Vitali’s Covering Lemma, there exists a countable {xk}k in C such that the balss {Bρk(xk)}k∈ℕ with \(\rho _{k} = \rho _{x_{k}}\) are disjoint and

$$C \subset \displaystyle{\cup_{k = 1}^{\infty} B_{5\rho_{k}}(x_{k})}. $$

From this, Eq. A.1 and Lemma 1, we infer that

$$\begin{array}{@{}rcl@{}} \omega(C) &\leq& \omega\left( C\cap \left( \cup_{k = 1}^{\infty} B_{5\rho_{k}}(x_{k}) \right) \right) \leq \sum\limits_{k = 1}^{N} \omega\left( C\cap B_{5\rho_{k}}(x_{k}) \right) \\ && < \epsilon \sum\limits_{k = 1}^{N}\omega (B_{5\rho_{k}}(x_{k})) \leq \epsilon M 5^{np}\sum\limits_{k = 1}^{N} \omega(B_{\rho_{k}}(x_{k})). \end{array} $$

Observe that by (i), and since \(B_{\rho _{k}}(x_{k})\) are all disjoint,

$$\left( \cup_{k = 1}^{n} B_{\rho_{k}}(x_{k}) \right) \cap {\Omega}_{R}(y_{0}) \subset D. $$

We claim that

$$ \omega(B_{\rho}(x)) \leq \max M\left\{A^{-1}, 4^{n} \right\}^{q} \omega(B_{\rho}(x) \cap {\Omega}_{R}(y_{0})), \quad \forall x \in {\Omega}_{R}(y_{0}), \ \rho \in (0, r_{0}). $$
(A.2)

From this claim, it follows that

$$\omega(C) \leq \epsilon^{\prime} \sum\limits_{k = 1}^{n} \omega\left( B_{\rho_{k}}(x_{k}) \cap {\Omega}_{R}(y_{0})\right) = \epsilon^{\prime} \omega \left( \left( \cup_{k = 1}^{n} B_{\rho_{k}}(x_{k}) \right) \cap {\Omega}_{R}(y_{0})\right) \leq \epsilon^{\prime} \omega(D). $$

It now remains to prove Eq. A.2. It follows from Lemma 1 that

$$\frac{\omega(B_{\rho}(x))}{\omega(B_{\rho}(x) \cap {\Omega}_{R}(y_{0}))} \leq M \left( \frac{|B_{\rho}(x)|}{|B_{\rho}(x) \cap {\Omega}_{R}(y_{0})|} \right)^{q}. $$

Hence, it suffices to prove

$$ \sup_{x \in {\Omega}_{R}(y_{0})}\sup_{0 <\rho < r_{0}} \frac{|B_{\rho}(x)|}{|B_{\rho}(x) \cap {\Omega}_{R}(y_{0})|} \leq \left\{ A^{-1}, 4^{n} \right\}. $$
(A.3)

We fix x ∈ΩR(y0) and ρ ∈ (0,r0). Observe that if Bρ(x) ⊂ΩR(y0). Then Eq. A.3 is trivial. Hence, we only need to consider the case Bρ(x) ∩ ΩR(y0)≠. We divide this situation into three subcases.

Case 1

If \(B_{\rho }(x) \cap \left (\partial B_{R}(y_{0}) \cap \overline {\Omega } \right ) \not =\emptyset \) and \(B_{\rho }(x) \cap \partial {\Omega } \cap \overline {B}_{R}(y_{0}) = \emptyset \). Then, it follows that ΩR(y0) ∩ Bρ(x) = BR(y0) ∩ Bρ(x). From this, a simple calculation shows

$$\frac{|B_{\rho}(x)|}{|B_{\rho}(x) \cap {\Omega}_{R}(y_{0})|} = \frac{|B_{\rho}(x)|}{|B_{\rho}(x) \cap B_{R}(y_{0})|} \leq 4^{n}. $$

Case 2

If \(B_{\rho }(x) \cap \partial {\Omega } \cap \overline {B}_{R}(y_{0}) \not = \emptyset \) and \(B_{\rho }(x) \cap \partial B_{R}(y_{0}) \cap \overline {\Omega } =\emptyset \). In this case, by the proof of [27, Lemma 3.8], it follows that

$$\frac{|B_{\rho}(x)|}{|B_{\rho}(x) \cap {\Omega}_{R}(y_{0})|} \leq \left( \frac{2}{1-4\delta} \right)^{n} \leq 4^{n}. $$

Case 3

If \(B_{\rho }(x) \cap \partial {\Omega } \cap \overline {B}_{R}(y_{0}) \not = \emptyset \) and \(B_{\rho }(x) \cap \partial B_{R}(y_{0}) \cap \overline {\Omega } \not =\emptyset \). Then, by the definition of type (A,r0) domain, we see that

$$|{\Omega}_{R}(y_{0}) \cap B_{\rho}(x)| \geq A|B_{\rho}(x)|. $$

Therefore,

$$\frac{|B_{\rho}(x)|}{|{\Omega}_{R}(y_{0}) \cap B_{\rho}(x)|} \leq A^{-1}. $$

This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phan, T. Weighted Calderón-Zygmund Estimates for Weak Solutions of Quasi-Linear Degenerate Elliptic Equations. Potential Anal 52, 393–425 (2020). https://doi.org/10.1007/s11118-018-9737-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-018-9737-z

Keywords

Mathematics Subject Classification (2010)

Navigation