Skip to main content

Advertisement

Log in

Ginkgo leaf cuticle chemistry across changing pCO2 regimes

  • Research Paper
  • Published:
PalZ Aims and scope Submit manuscript

Abstract

Cuticles have been a key part of palaeobotanical research since the mid-19th Century. Recently, cuticular research has moved beyond morphological traits to incorporate the chemical signature of modern and fossil cuticles, with the aim of using this as a taxonomic and classification tool. For this approach to work, cuticle chemistry would have to maintain a strong taxonomic signal, with a limited input from the ambient environment in which the plant grew. Here, we use attenuated total reflectance Fourier Transform infrared (ATR-FTIR) spectroscopy to analyse leaf cuticles from Ginkgo biloba plants grown in experimentally enhanced CO2 conditions, to test for the impact of changing CO2 regimes on cuticle chemistry. We find limited evidence for an impact of CO2 on the chemical signature of Ginkgo cuticles, with more pronounced differences demonstrated between the abaxial (lower leaf surface) and adaxial (upper leaf surface) cuticles. These findings support the use of chemotaxonomy for plant cuticular remains across geological timescales, and the concomitant large-scale variations in CO2 concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abu Hamad, A., P. Blomenkemper, H. Kerp, and B. Bomfleur. 2017. Dicroidium bandelii sp. nov. (corystospermalean foliage) from the Permian of Jordan. PalZ. Paläontologische Zeitschrift 91: 641–648. https://doi.org/10.1007/s12542-017-0384-2.

    Article  Google Scholar 

  • Abu Hamad, A., H. Kerp, B. Vörding, and K. Bandel. 2008. A late permian flora with Dicroidium from the dead sea region, Jordan. Review of Palaeobotany and Palynology 149: 85–130.

    Article  Google Scholar 

  • Blokker, P., P. Boelen, R. Broekman, and J. Rozema. 2006. The occurrence of p-coumaric acid and ferulic acid in fossil plant materials and their use as UV-proxy. Plant Ecology 182: 197–207.

    Google Scholar 

  • Blokker, P., D. Yeloff, P. Boelen, R.A. Broekman, and J. Rozema. 2005. Development of a proxy for past surface UV-B Irradiation: a thermally assisted hydrolysis and methylation py-GC/MS Method for the analysis of Pollen and Spores. Analytical Chemistry 77: 6026–6031.

    Article  Google Scholar 

  • Bomfleur, B., A.L. Decombeix, I.H. Escapa, A.B. Schwendemann, and B. Axsmith. 2013. Whole-plant concept and environment reconstruction of a Telemachus conifer (Voltziales) from the Triassic of Antarctica. International Journal of Plant Sciences 174(3): 425–444. https://doi.org/10.1086/668686.

    Article  Google Scholar 

  • Collinson, M.E., P. Finch, B. Mösle, R. Wilson, and A.C. Scott. 1999. Preservation of plant cuticles. Acta Palaeobotanica Supplement 2: 629–632.

    Google Scholar 

  • D’Angelo, J.A. 2006. Analysis by fourier transform infrared spectroscopy of Johnstonia (Corystospermales, Corystospermaceae) cuticles and compressions from the Triassic of Cacheuta, Mendoza, Argentina. Ameghiniana 43(4): 669–685.

    Google Scholar 

  • D’Angelo, J.A., L.B. Escudero, W. Volkheimer, and E.L. Zodrow. 2011. Chemometric analysis of functional groups in fossil remains of the Dicroidium flora (Cacheuta, Mendoza, Argentina): Implications for kerogen formation. International Journal of Coal Geology 87: 97–111. https://doi.org/10.1016/j.coal.2011.05.005.

    Article  Google Scholar 

  • D’Angelo, J.A., and E.L. Zodrow. 2015. Chemometric study of structural groups in medullosalean foliage (Carboniferous, fossil Lagerstätte, Canada): Chemotaxonomic implications. International Journal of Coal Geology 138: 42–54. https://doi.org/10.1016/j.coal.2014.12.003.

    Article  Google Scholar 

  • D’Angelo, J.A., E.L. Zodrow, and A. Camargo. 2010. Chemometric study of functional groups in pennsylvanian gymnosperm plant organs (Sydney Coalfield, Canada): Implications for chemotaxonomy and assessment of kerogen formation. Organic Geochemistry 41: 1312–1325. https://doi.org/10.1016/j.orggeochem.2010.09.010.

    Article  Google Scholar 

  • Dell’Anna, R.P., M. Lazzeri, F. Frisanco, F. Monti, F.M. Campeggi, E. Gottardini, and M. Bersani. 2009. Pollen discrimination and classification by Fourier transform infrared (FT-IR) microspectroscopy and machine learning. Analytical and Bioanalytical Chemistry 394(5): 1443–1452. https://doi.org/10.1007/s00216-009-2794-9.

    Article  Google Scholar 

  • Depciuch, J., I. Kasprzyk, E. Drzymała, and M. Parlinska-Wojtan. 2018. Identification of birch pollen species using FTIR spectroscopy. Aerobiologia 34: 525–538. https://doi.org/10.1007/s10453-018-9528-4.

    Article  Google Scholar 

  • Diefendorf, A.F., K.E. Mueller, S.L. Wing, P.L. Koch, and K.H. Freeman. 2010. Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proceedings of the National Academy of Sciences USA 107(13): 5738–5743. https://doi.org/10.1073/pnas.0910513107.

    Article  Google Scholar 

  • Dominguez, E., M.D. Fernandez, J.C. Hernandez, J.P. Parra, L. Espana, A. Heredia, and J. Cuartero. 2012. Tomato fruit continues growing while ripening, affecting cuticle properties and cracking. Physiologia Plantarum 146(4): 473–486. https://doi.org/10.1111/j.1399-3054.2012.01647.x.

    Article  Google Scholar 

  • Dominguez, E., J.A. Heredia-Guerrero, and A. Heredia. 2017. The plant cuticle: old challenges, new perspectives. Journal of Experimental Botany 68(19): 5251–5255. https://doi.org/10.1093/jxb/erx389.

    Article  Google Scholar 

  • Domínguez, E., J.A. Heredia-Guerrero, and A. Heredia. 2011. The biophysical design of plant cuticles: an overview. New Phytologist 189: 938–949. https://doi.org/10.1111/j.1469-8137.2010.03553.x.

    Article  Google Scholar 

  • Esler, M.B., D.W.T. Griffith, S.R. Wilson, and L.P. Steele. 2000. Precision trace gas analysis by FT-IR spectroscopy. 2. The 13C/12C isotope ratio of CO2. Analytical Chemistry 72: 216–221.

    Article  Google Scholar 

  • Foster, G.L., D.L. Royer, and D.J. Lunt. 2017. Future climate forcing potentially without precedent in the last 420 million years. Nature Communications 8: 14845. https://doi.org/10.1038/ncomms14845.

    Article  Google Scholar 

  • Fraser, W.T., B.H. Lomax, P.E. Jardine, W.D. Gosling, and M.A. Sephton. 2014. Pollen and spores as a passive monitor of ultraviolet radiation. Frontiers in Ecology and Evolution. https://doi.org/10.3389/fevo.2014.00012.

    Article  Google Scholar 

  • Fraser, W.T., M.A. Sephton, J.S. Watson, S. Self, B.H. Lomax, D.I. James, C.H. Wellman, T.V. Callaghan, and D.J. Beerling. 2011. UV-B absorbing pigments in spores: biochemical responses to shade in a high-latitude birch forest and implications for sporopollenin-based proxies of past environmental change. Polar Research 30: 8312. https://doi.org/10.3402/polar.v30i0.8312.

    Article  Google Scholar 

  • Gill, F.L., J. Hummel, A.R. Sharifi, A.P. Lee, and B.H. Lomax. 2018. Diets of giants: the nutritional value of sauropod diet during the Mesozoic. Palaeontology 61(5): 647–658. https://doi.org/10.1111/pala.12385.

    Article  Google Scholar 

  • Gonzalez, J.A., M.G. Gallardo, C. Boero, M.L. Cruz, and F.E. Prado. 2007. Altitudinal and seasonal variation of protective and photosynthetic pigments in leaves of the world’s highest elevation trees Polylepis tarapacana (Rosaceae). Acta Oecologica 32: 36–41.

    Article  Google Scholar 

  • Gupta, N.S. 2014. Biopolymers: a molecular paleontology approach. Dordrecht: Springer. (=Topics in geobiology 38).

    Google Scholar 

  • Gupta, N.S., D.E.G. Briggs, M.E. Collinson, R.P. Evershed, R. Michels, K.S. Jack, and R.D. Pancost. 2007a. Evidence for the in situ polymerisation of labile aliphatic organic compounds during the preservation of fossil leaves: Implications for organic matter preservation. Organic Geochemistry 38: 499–522. https://doi.org/10.1016/j.orggeochem.2006.06.011.

    Article  Google Scholar 

  • Gupta, N.S., R. Michels, D.E.G. Briggs, M.E. Collinson, R.P. Evershed, and R.D. Pancost. 2007b. Experimental evidence for the formation of geomacromolecules from plant leaf lipids. Organic Geochemistry 38(1): 28–36. https://doi.org/10.1016/j.orggeochem.2006.09.014.

    Article  Google Scholar 

  • Heredia-Guerrero, J.A., J.J. Benitez, E. Dominguez, I.S. Bayer, R. Cingolani, A. Athanassiou, and A. Heredia. 2014. Infrared and Raman spectroscopic features of plant cuticles: a review. Frontiers in Plant Sciences 5: 305. https://doi.org/10.3389/fpls.2014.00305.

    Article  Google Scholar 

  • Innes, S.N., L.E. Arve, B. Zimmermann, L. Nybakken, T.I. Melby, K.A. Solhaug, J.E. Olsen, and S. Torre. 2019. Elevated air humidity increases UV mediated leaf and DNA damage in pea (Pisum sativum) due to reduced flavonoid content and antioxidant power. Photochemical & Photobiological Sciences 18(2): 387–399. https://doi.org/10.1039/c8pp00401c.

    Article  Google Scholar 

  • Jardine, P.E., F.A.J. Abernethy, B.H. Lomax, W.D. Gosling, and W.T. Fraser. 2017. Shedding light on sporopollenin chemistry, with reference to UV reconstructions. Review of Palaeobotany and Palynology 238: 1–6. https://doi.org/10.1016/j.revpalbo.2016.11.014.

    Article  Google Scholar 

  • Jardine, P.E., W.T. Fraser, B.H. Lomax, M.A. Sephton, T.M. Shanahan, C.S. Miller, and W.D. Gosling. 2016. Pollen and spores as biological recorders of past ultraviolet irradiance. Scientific Reports 6(39269): 1–8. https://doi.org/10.1038/srep39269.

    Article  Google Scholar 

  • Julier, A.C.M., P.E. Jardine, A.L. Coe, W.D. Gosling, B.H. Lomax, and W.T. Fraser. 2016. Chemotaxonomy as a tool for interpreting the cryptic diversity of Poaceae pollen. Review of Palaeobotany and Palynology 235: 140–147.

    Article  Google Scholar 

  • Kerp, H. 1990. The study of fossil gymnosperms by means of cuticular analysis. Palaios 5: 548–569.

    Article  Google Scholar 

  • Kerp, H., A. Abu Hamad, B. Vörding, and K. Bandel. 2006. Typical Triassic Gondwanan floral elements in the upper permian of the paleotropics. Geology 34(4): 265–268. https://doi.org/10.1130/G22187.1.

    Article  Google Scholar 

  • Leeuw, J.W. de, G.J.M. Versteegh, and P.F. van Bergen. 2006. Biomacromolecules of algae and plants and their fossil analogues. Plant Ecology 182: 209–233. https://doi.org/10.1007/s11258-005-9027-x.

    Article  Google Scholar 

  • Liland, K.H., and B-H. Mevik. 2015. Baseline: Baseline correction of spectra, R package version 1.2-1, available at: https://CRAN.R-project.org/package=baseline. Accessed 17 Oct 2018.

  • Littlejohn, G.R., J.C. Mansfield, D. Parker, R. Lind, S. Perfect, M. Seymour, N. Smirnoff, J. Love, and J. Moger. 2015. In vivo chemical and structural analysis of plant cuticular waxes using stimulated Raman scattering microscopy. Plant Physiology 168(1): 18–28. https://doi.org/10.1104/pp.15.00119.

    Article  Google Scholar 

  • Liu, N., C. Karunakaran, R. Lahlali, T. Warkentin, and R.A. Bueckert. 2019. Genotypic and heat stress effects on leaf cuticles of field pea using ATR-FTIR spectroscopy. Planta 249(2): 601–613. https://doi.org/10.1007/s00425-018-3025-4.

    Article  Google Scholar 

  • Lomax, B.H., and W.T. Fraser. 2015. Palaeoproxies: Botanical monitors and recorders of atmospheric change. Palaeontology 58(5): 759–768. https://doi.org/10.1111/pala.12180.

    Article  Google Scholar 

  • Lomax, B.H., J. Hilton, R.M. Bateman, G.R. Upchurch, J.A. Lake, I.J. Leitch, A. Cromwell, and C.A. Knight. 2014. Reconstructing relative genome size of vascular plants through geological time. New Phytologist 201(2): 636–644.

    Article  Google Scholar 

  • Lomax, B.H., W.T. Fraser, G. Harrington, S. Blackmore, M.A. Sephton, and N.B.W. Harris. 2012. A novel palaeoaltimetry proxy based on spore and pollen wall chemistry. Earth and Planetary Science Letters 353–354: 22–28. https://doi.org/10.1016/j.epsl.2012.07.039.

    Article  Google Scholar 

  • Lomax, B.H., W.T. Fraser, M.A. Sephton, T.V. Callaghan, S. Self, M. Harfoot, J.A. Pyle, C.H. Wellman, and D.J. Beerling. 2008. Plant spore walls as a record of long-term changes in ultraviolet-B radiation. Nature Geoscience 1(9): 592–596. https://doi.org/10.1038/ngeo278.

    Article  Google Scholar 

  • Lyons, P.L., W.H. Orem, M. Mastalerz, E.L. Zodrow, A. Vieth-Redemann, and R.M. Bustin. 1995. 13C NMR, micro-FTIR and fluorescence spectra, and pyrolysis-gas chromatograms of coalified foliage of late Carboniferous medullosan seed ferns, Nova Scotia, Canada: Implications for coalification and chemotaxonomy. International Journal of Coal Geology 27: 227–248.

    Article  Google Scholar 

  • McElwain, J.C., and M. Steinthorsdottir. 2017. Paleoecology, ploidy, paleoatmospheric composition, and developmental biology: A review of the multiple uses of fossil stomata. Plant Physiology 174(2): 650–664. https://doi.org/10.1104/pp.17.00204.

    Article  Google Scholar 

  • McElwain, J.C., and W.G. Chaloner. 1995. Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Palaeozoic. Annals of Botany 76: 389–395.

    Article  Google Scholar 

  • Mösle, B., M.E. Collinson, P.F. Finch, B.A. Stankiewicz, A.C. Scott, and R. Wilson. 1998. Factors influencing the preservation of plant cuticles: a comparison of morphology and chemical composition of modern and fossil examples. Organic Geochemistry 29(5–7): 1369–1380.

    Article  Google Scholar 

  • Mösle, B., M.E. Collinson, A.C. Scott, and P. Finch. 2002. Chemosystematic and microstructural investigations on Carboniferous seed plant cuticles from four North American localities. Review of Palaeobotany and Palynology 120: 41–52.

    Article  Google Scholar 

  • Mösle, B., P. Finch, M.E. Collinson, and A.C. Scott. 1997. Comparison of modern and fossil plant cuticles by selective chemical extraction monitored by flash pyrolysis-gas chromatography-mass spectrometry and electron microscopy. Journal of Analytical and Applied Pyrolysis 40–41: 585–597.

    Article  Google Scholar 

  • Neitzke, M., and A. Therburg. 2003. Seasonal changes in UV-B absorption in beech leaves (Fagus sylvatica L.) along an elevation gradient. Forstwissenschaftliches Centralblatt 122: 1–21.

    Article  Google Scholar 

  • Olcott Marshall, A., and C.P. Marshall. 2014. Vibrational spectroscopy of fossils. Palaeontology 58(5): 201–211. https://doi.org/10.1111/pala.12144.

    Article  Google Scholar 

  • Pappas, C.S., P.A. Tarantilis, P.C. Harizanis, and M.G. Polissiou. 2003. New method for pollen identification by FT-IR spectroscopy. Applied Spectroscopy 57(1): 23–27.

    Article  Google Scholar 

  • Peters-Kottig, W., H. Strauss, and H. Kerp. 2006. The land plant δ13C record and plant evolution in the Late Palaeozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 240: 237–252.

    Article  Google Scholar 

  • R Core Team. 2017. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Ramirez, F.J., P. Luque, A. Heredia, and M.J. Bukovac. 1992. Fourier transform IR study of enzymatically isolated tomato fruit cuticular membrane. Biopolymers 32: 1425–1429.

    Article  Google Scholar 

  • Renault, H., A. Alber, N.A. Horst, A. Basilio Lopes, E.A. Fich, L. Kriegshauser, G. Wiedemann, et al. 2017. A phenol-enriched cuticle is ancestral to lignin evolution in land plants. Nature Communications 8: 14713. https://doi.org/10.1038/ncomms14713.

    Article  Google Scholar 

  • Ribeiro da Luz, B. 2006. Attenuated total reflectance spectroscopy of plant leaves: a tool for ecological and botanical studies. New Phytologist 172(2): 305–318. https://doi.org/10.1111/j.1469-8137.2006.01823.x.

    Article  Google Scholar 

  • Richey, J.D., G.R. Upchurch, I.P. Montañez, B.H. Lomax, M.B. Suarez, N.M.J. Crout, R.M. Joeckele, G.A. Ludvigson, and J.J. Smith. 2018. Changes in CO2 during ocean anoxic event 1d indicate similarities to other carbon cycle perturbations. Earth and Planetary Science Letters 491: 172–182.

    Article  Google Scholar 

  • Rozema, J., P. Blokker, M.A. Mayoral Fuertes, and R. Broekman. 2009. UV-B absorbing compounds in present-day and fossil pollen, spores, cuticles, seed coats and wood: evaluation of a proxy for solar UV radiation. Photochemical & Photobiological Sciences 8(9): 1233–1243. https://doi.org/10.1039/b904515e.

    Article  Google Scholar 

  • Rozema, J., R.A. Broekman, P. Blokker, B. Meijkamp, N. de Bakker, J. van de Staaij, A. van Beem, F. Ariese, and S.M. Kars. 2001a. UV-B absorbance and UV-B absorbing compounds (para-coumaric acid) in pollen and sporopollenin: the perspective to track historic UV-B levels. Journal of Photochemistry and Photobiology (B: Biology) 62: 108–117.

    Article  Google Scholar 

  • Rozema, J., A.J. Noordjik, R.A. Broekman, A. van Beem, B.M. Meijkamp, N.V.J. de Bakker, J.W.M. van de Staaij, et al. 2001b. (Poly) phenolic compounds in pollen and spores of Antarctic plants as indicators of UV-B: A new proxy for the reconstruction of past solar UV-B? Plant Ecology 154: 11–26.

    Google Scholar 

  • Rozema, J., J. van de Staaij, L.-O. Björn, and N. de Bakker. 1999. Depletion of stratospheric ozone and solar UV-B radiation: Evolution of land plants, UV-screens and functions of polyphenolics. In Stratospheric ozone depletion: The effects of enhanced UV-B radiation on terrestrial ecosystems, ed. J. Rozema, 1–19. Leiden: Backhuys.

    Google Scholar 

  • Salminen, T.A., D.M. Eklund, V. Joly, K. Blomqvist, D.P. Matton, and J. Edqvist. 2018. Deciphering the evolution and development of the cuticle by studying lipid transfer proteins in mosses and liverworts. Plants. https://doi.org/10.3390/plants7010006.

    Article  Google Scholar 

  • Steemans, P., K. Lepot, C.P. Marshall, A. Le Hérissé, and E.J. Javaux. 2010. FTIR characterization of the chemical composition of Silurian miospores (cryptospores and trilete spores) from Gotland, Sweden. Review of Palaeobotany and Palynology 162(4): 577–590.

    Article  Google Scholar 

  • Steinthorsdottir, M., C. Elliott-Kingston, and K.L. Bacon. 2018a. Cuticle surfaces of fossil plants as a potential proxy for volcanic SO2 emissions: observations from the Triassic-Jurassic transition of East Greenland. Palaeobiodiversity and Palaeoenvironments 98: 49. https://doi.org/10.1007/s12549-017-0297-9.

    Article  Google Scholar 

  • Steinthorsdottir, M., V. Vajda, and M. Pole. 2018b. Significant transient pCO2 perturbation at the New Zealand Oligocene-Miocene transition recorded by fossil plant stomata. Palaeogeography, Palaeoclimatology, Palaeoecology 515: 152–161.

    Article  Google Scholar 

  • Stevens, A., and L. Ramirez-Lopez. 2013. An introduction to the prospectr package. R package Vignette, R package version 0.1.3, available at: https://cran.r-project.org/web/packages/prospectr/vignettes/prospectr-intro.pdf. Accessed 17 Oct 2018.

  • Tegelaar, E.W., J. Wattendorff, and J.W. de Leeuw. 1993. Possible effects of chemical heterogeneity in higher land plant cuticles on the preservation of its ultrastructure upon fossilization. Review of Palaeobotany and Palynology 77: 149–170.

    Article  Google Scholar 

  • Vajda, V., M. Pucetaite, S. McLoughlin, A. Engdahl, J. Heimdal, and P. Uvdal. 2017. Molecular signatures of fossil leaves provide unexpected new evidence for extinct plant relationships. Nature Ecology and Evolution 1(8): 1093–1099. https://doi.org/10.1038/s41559-017-0224-5.

    Article  Google Scholar 

  • Villena, J.F., E. Domínguez, and A. Heredia. 2000. Monitoring biopolymers present in plant cuticles by FT-IR spectroscopy. Journal of Plant Physiology 156: 419–422. https://doi.org/10.1016/S0176-1617(00)80083-8.

    Article  Google Scholar 

  • Watson, J.S., M.A. Septhon, S.V. Sephton, S. Self, W.T. Fraser, B.H. Lomax, I. Gilmour, C.H. Wellman, and D.J. Beerling. 2007. Rapid determination of spore chemistry using thermochemolysis gas chromatography-mass spectrometry and micro-Fourier transform infrared spectroscopy. Photochemical & Photobiological Sciences 6: 689–694. https://doi.org/10.1039/b617794h.

    Article  Google Scholar 

  • Willis, K.J., A. Feurdean, H.J.B. Birks, A.E. Bjune, E. Breman, R. Broekman, J.A. Grytnes, M. New, J.S. Singarayer, and J. Rozema. 2011. Quantification of UV-B flux through time using UV-B-absorbing compounds contained in fossil Pinus sporopollenin. New Phytologist 192(2): 553–560. https://doi.org/10.1111/j.1469-8137.2011.03815.x.

    Article  Google Scholar 

  • Woodward, F.I. 1987. Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature 327: 617–618.

    Article  Google Scholar 

  • Zhou, Z., and X. Wu. 2006. The rise of ginkgoalean plants in the early Mesozoic: a data analysis. Geological Journal 41: 363–375. https://doi.org/10.1002/gj.1049.

    Article  Google Scholar 

  • Zimmermann, B., and A. Kohler. 2014. Infrared spectroscopy of pollen identifies plant species and genus as well as environmental conditions. PLoS One 9(4): 1–12. https://doi.org/10.1371/journal.pone.0095417.t001.

    Article  Google Scholar 

  • Zimmermann, B., V. Tafintseva, M. Bağcıoğlu, M. Høegh Berdahl, and A. Kohler. 2016. Analysis of allergenic pollen by FTIR microspectroscopy. Analytical Chemistry 88: 803–811. https://doi.org/10.1021/acs.analchem.5b03208.

    Article  Google Scholar 

  • Zodrow, E.L., J.A. D’Angelo, R. Helleur, and Z. Simunek. 2012a. Functional groups and common pyrolysate products of Odontopteris cantabrica (index fossil for the cantabrian substage, carboniferous). International Journal of Coal Geology 100: 40–50. https://doi.org/10.1016/j.coal.2012.06.002.

    Article  Google Scholar 

  • Zodrow, E.L., J.A. D’Angelo, M. Mastalerz, and D. Keefe. 2009. Compression–cuticle relationship of seed ferns: Insights from liquid–solid states FTIR (Late Palaeozoic-Early Mesozoic, Canada–Spain–Argentina). International Journal of Coal Geology 79: 61–73. https://doi.org/10.1016/j.coal.2009.06.001.

    Article  Google Scholar 

  • Zodrow, E.L., J.A. D’Angelo, W.A. Taylor, T. Catelani, J.A. Heredia-Guerrero, and M. Mastalerz. 2016. Secretory organs: Implications for lipoid taxonomy and kerogen formation (seed ferns, Pennsylvanian, Canada). International Journal of Coal Geology 167: 184–200. https://doi.org/10.1016/j.coal.2016.10.004.

    Article  Google Scholar 

  • Zodrow, E.L., and M. Mastalerz. 2001. Chemotaxonomy for naturally macerated tree-fern cuticles (Medullosales and Marattiales), Carboniferous Sydney and Mabou Sub-Basins, Nova Scotia, Canada. International Journal of Coal Geology 47: 255–275.

    Article  Google Scholar 

  • Zodrow, E.L., and M. Mastalerz. 2002. FTIR and py-GC-MS spectra of true-fern and seed-fern sphenopterids (Sydney Coalfield, Nova Scotia, Canada, Pennsylvanian). International Journal of Coal Geology 51: 111–127.

    Article  Google Scholar 

  • Zodrow, E.L., and M. Mastalerz. 2009. A proposed origin for fossilized Pennsylvanian plant cuticles by pyrite oxidation (Sydney Coalfield, Nova Scotia, Canada). Bulletin of Geosciences 84(2): 227–240. https://doi.org/10.3140/bull.geosci.1094.

    Article  Google Scholar 

  • Zodrow, E.L., M. Mastalerz, and R. Helleur. 2012b. Lepidodendron dawsonii: functional groups and pyrolysates of compression and fossilized-cuticle (Late Asturian, Canada). Geologica Croatica 65(3): 367–374.

    Article  Google Scholar 

  • Zodrow, E.L., M. Mastalerz, W.H. Orem, Z. Simunek, and A.R. Bashforth. 2000. Functional groups and elemental analyses of cuticular morphotypes of Cordaites principalis (Germar) Geinitz, Carboniferous Maritimes Basin, Canada. International Journal of Coal Geology 45: 1–19.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Benjamin Bomfleur, Michael Krings and Christian Pott for the invitation to contribute to this special issue of PalZ, and Hans Kerp for his many years of research into the interpretation and use of cuticlar remains. We also thank Vivi Vajda and one anonymous reviewer for their reviews, and Benjamin Bomfleur and Mike Reich for editorial comments. This research was supported by the Palaeontological Association (PEJ: PA-RG201802) and the Natural Environment Research Council (BHL, WTF, MK: NE/R001324/1; WTF: NE/P013724/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip E. Jardine.

Additional information

Handling Editor: Benjamin Bomfleur.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 552 kb)

Supplementary material 2 (PDF 114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jardine, P.E., Kent, M., Fraser, W.T. et al. Ginkgo leaf cuticle chemistry across changing pCO2 regimes. PalZ 93, 549–558 (2019). https://doi.org/10.1007/s12542-019-00486-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12542-019-00486-7

Keywords

Navigation