Skip to main content
Log in

Resource optimization of product development projects with time-varying dependency structure

  • Original Paper
  • Published:
Research in Engineering Design Aims and scope Submit manuscript

Abstract

Project managers are continuously under pressure to shorten product development durations. One practical approach for reducing the project duration is lessening dependencies between different development components and teams. However, most of the resource allocation strategies for lessening dependencies place the implicit and simplistic assumption that the dependency structure between components is static (i.e., does not change over time). This assumption, however, does not necessarily hold true in all product development projects. In this paper, we present an analytical framework for optimally allocating resources to shorten the lead time of product development projects having a time-varying dependency structure. We build our theoretical framework on a linear system model of product development processes, in which system integration and local development teams exchange information asynchronously and aperiodically. Utilizing a convexity result from the matrix theory, we show that the optimal resource allocation can be efficiently found by solving a convex optimization problem. We provide illustrative examples to demonstrate the proposed framework. We also present boundary analyses based on major graph models to provide managerial guidelines for improving empirical PD processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adler P, Mandelbaum A, Nguyen V, Schwerer E (1995) Project to process management: empirically-based framework for analyzing product development time. Manag Sci 41(3):458–484

    Article  MATH  Google Scholar 

  • Ahmadi R, Wang RH (1999) Managing development risk in product design processes. Oper Res 47:235–246

    Article  MATH  Google Scholar 

  • Alcaraz J, Maroto C, Ruiz R (2003) Solving the multi-mode resource-constrained project scheduling problem with genetic algorithms. J Oper Res Soc 54(6):614–626

    Article  MATH  Google Scholar 

  • Baldwin C, Clark K (2000) Design rules: the power of modularity. MIT Press, Cambridge

    Book  Google Scholar 

  • Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  MathSciNet  MATH  Google Scholar 

  • Boctor FF (1996) A new and efficient heuristic for scheduling projects with resource restrictions and multiple execution modes. Eur J Oper Res 90(2):349–361

    Article  MathSciNet  MATH  Google Scholar 

  • Borjesson F, Hölttä-Otto K (2014) A module generation algorithm for product architecture based on component interactions and strategic drivers. Res Eng Des 25(1):31–51

    Article  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Boyd S, Kim SJ, Vandenberghe L, Hassibi A (2007) A tutorial on geometric programming. Optim Eng 8(1):67–127

    Article  MathSciNet  MATH  Google Scholar 

  • Braha D, Bar-Yam Y (2004a) Information flow structure in large-scale product development organizational networks. J Inf Technol 19(4):244–253

    Article  Google Scholar 

  • Braha D, Bar-Yam Y (2004b) Topology of large-scale engineering problem-solving networks. Phys Rev E 69(1):016113

    Article  Google Scholar 

  • Braha D, Bar-Yam Y (2006) From centrality to temporary fame: dynamic centrality in complex networks. Complexity 12(2):59–63

    Article  Google Scholar 

  • Braha D, Bar-Yam Y (2007) The statistical mechanics of complex product development: empirical and analytical results. Manag Sci 53(7):1127–1145

    Article  MATH  Google Scholar 

  • Braha D, Bar-Yam Y (2009) Time-dependent complex networks: dynamic centrality, dynamic motifs, and cycles of social interactions. In: Gross T, Sayama H (eds) Adaptive networks: theory, models and applications. Springer, Berlin, pp 39–50

    Chapter  Google Scholar 

  • Browning TR (2016) Design structure matrix extensions and innovations: a survey and new opportunities. IEEE Trans Eng Manag 63(1):27–52

    Article  MathSciNet  Google Scholar 

  • Browning TR, Ramasesh RV (2007) A survey of activity network-based process models for managing product development projects. Prod Oper Manag 16(2):217–240

    Article  Google Scholar 

  • Cai J, Liu X, Xiao Z, Liu J (2009) Improving supply chain performance management: a systematic approach to analyzing iterative KPI accomplishment. Decis Support Syst 46(2):512–521

    Article  Google Scholar 

  • Chen J, Reilly RR, Lynn GS (2012) New product development speed: Too much of a good thing? J Product Innov Manag 29(2):288–303

    Article  Google Scholar 

  • Cheng H, Chu X (2012) Task assignment with multiskilled employees and multiple modes for product development projects. Int J Adv Manuf Technol 61(1–4):391–403

    Article  Google Scholar 

  • Cicmil S, Williams T, Thomas J, Hodgson D (2006) Rethinking project management: researching the actuality of projects. Int J Project Manag 24(8):675–686

    Article  Google Scholar 

  • Collyer S, Warren CM (2009) Project management approaches for dynamic environments. Int J Project Manag 27(4):355–364

    Article  Google Scholar 

  • Cooke-Davies T (2002) The “real” success factors on projects. Int J Project Manag 20(3):185–190

    Article  Google Scholar 

  • Cui Q, Hastak M, Halpin D (2010) Systems analysis of project cash flow management strategies. Constr Manag Econ 28(4):361–376

    Article  Google Scholar 

  • Erdős L, Rényi A (1959) On random graphs. I. Publ Math 6:290–297

    MathSciNet  MATH  Google Scholar 

  • Fefferman N, Ng K (2007) How disease models in static networks can fail to approximate disease in dynamic networks. Phys Rev E 76(3):031919

    Article  MathSciNet  Google Scholar 

  • Frenken K (2006) A fitness landscape approach to technological complexity, modularity, and vertical disintegration. Struct Change Econ Dyn 17(3):288–305

    Article  Google Scholar 

  • Hahn GJ, Kuhn H (2012) Designing decision support systems for value-based management: a survey and an architecture. Decis Support Syst 53(3):591–598

    Article  Google Scholar 

  • Hartmann S, Briskorn D (2010) A survey of variants and extensions of the resource-constrained project scheduling problem. Eur J Oper Res 207(1):1–14

    Article  MathSciNet  MATH  Google Scholar 

  • Hill SA, Braha D (2010) Dynamic model of time-dependent complex networks. Phys Rev E 82(4):046105

    Article  Google Scholar 

  • Holme P (2015) Modern temporal network theory: a colloquium. Eur Phys J B 88(9):234

    Article  Google Scholar 

  • Hölttä-Otto K, de Weck O (2007) Degree of modularity in engineering systems and products with technical and business constraints. Concurr Eng Res Appl 15(2):113–125

    Article  Google Scholar 

  • Huberman BA, Glance NS (1993) Evolutionary games and computer simulations. Proc Natl Acad Sci 90(16):7716–7718

    Article  MATH  Google Scholar 

  • Huberman BA, Wilkinson DM (2005) Performance variability and project dynamics. Comput Math Org Theory 11(4):307–332

    Article  MATH  Google Scholar 

  • Joglekar NR, Ford DN (2005) Product development resource allocation with foresight. Eur J Oper Res 160(1):72–87

    Article  MATH  Google Scholar 

  • Joglekar NR, Yassine AA, Eppinger SD, Whitney DE (2001) Performance of coupled product development activities with a deadline. Manag Sci 47(12):1605–1620

    Article  Google Scholar 

  • Kim D (2007) On representations and dynamic analysis of concurrent engineering design. J Eng Des 18(3):265–277

    Article  Google Scholar 

  • Kingman JFC (1961) A convexity property of positive matrices. Q J Math 12(1):283–284

    Article  MathSciNet  MATH  Google Scholar 

  • Krishnan V, Ulrich KT (2001) Product development decisions: a review of the literature. Manag Sci 47(1):1–21

    Article  Google Scholar 

  • Lee H, Padmanabhan V, Whang S (1997) Information distortion in a supply chain: the bullwhip effect. Manag Sci 43:546–558

    Article  MATH  Google Scholar 

  • Lee SG, Ong KL, Khoo LP (2004) Control and monitoring of concurrent design tasks in a dynamic environment. Concurr Eng Res Appl 12(1):59–66

    Article  Google Scholar 

  • Lin H, Antsaklis PJ (2007) Switching stabilizability for continuous-time uncertain switched linear systems. IEEE Trans Autom Control 52(4):633–646

    Article  MathSciNet  MATH  Google Scholar 

  • Lin H, Antsaklis P (2009) Stability and stabilizability of switched linear systems: a survey of recent results. IEEE Trans Autom Control 54(2):308–322

    Article  MathSciNet  MATH  Google Scholar 

  • Loch CH, Terwiesch C (1998) Communication and uncertainty in concurrent engineering. Manag Sci 44(8):1032–1048

    Article  MATH  Google Scholar 

  • Loch C, Terwiesch C (1999) Accelerating the process of engineering change orders: capacity and congestion effects. J Product Innov Manag 16:145–159

    Article  Google Scholar 

  • Martin MV, Ishii K (2002) Design for variety: developing standardized and modularized product platform architectures. Res Eng Des 13(4):213–235

    Article  Google Scholar 

  • Masuda N, Lambiotte R (2016) A guide to temporal networks. World Scientific Publishing, Singapore

    Book  MATH  Google Scholar 

  • McDaniel CD (1996) A linear system framework for analyzing the automotive appearance design process. Ph.D. thesis, Massachusetts Institute of Technology

  • Mihm J, Loch C, Huchzermeier A (2003) Problem-solving oscillations in complex engineering projects. Manag Sci 49(6):733–750

    Article  Google Scholar 

  • Muller R, Geraldi J, Turner JR, Müller R, Geraldi J, Turner JR (2012) Relationships between leadership and success in different types of project complexities. IEEE Trans Eng Manag 59(1):77–90

    Article  Google Scholar 

  • Newman MEJ (2010) Networks: an introduction. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  • Ogura M, Martin CF (2015) Stability analysis of linear systems subject to regenerative switchings. Syst Control Lett 75:94–100

    Article  MathSciNet  MATH  Google Scholar 

  • Ogura M, Preciado VM (2016) Stability of Markov regenerative switched linear systems. Automatica 69:169–175

    Article  MathSciNet  MATH  Google Scholar 

  • Ogura M, Preciado VM (2017) Optimal design of switched networks of positive linear systems via geometric programming. IEEE Trans Control Netw Syst 4(2):213–222

    Article  MathSciNet  MATH  Google Scholar 

  • Ong KL, Lee SG, Khoo LP (2003) Homogeneous state-space representation of concurrent design. J Eng Des 14(2):221–245

    Article  Google Scholar 

  • Patterson JH, Brian Talbot F, Slowinski R, Wegłarz J (1990) Computational experience with a backtracking algorithm for solving a general class of precedence and resource-constrained scheduling problems. Eur J Oper Res 49(1):68–79

    Article  MATH  Google Scholar 

  • Peteghem VV, Vanhoucke M (2010) A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem. Eur J Oper Res 201(2):409–418

    Article  MathSciNet  MATH  Google Scholar 

  • PMI (2013) A guide to the project management body of knowledge. Project Management Institute, Newtown Square

    Google Scholar 

  • Richards J (1983) Analysis of periodically time varying systems. Springer, New York

    Book  MATH  Google Scholar 

  • Serrador P, Turner R (2015) The relationship between project success and project efficiency. Project Manag J 46(1):30–39

    Article  Google Scholar 

  • Smith WL (1955) Regenerative stochastic processes. Proc R Soc A Math Phys Eng Sci 232(1188):6–31

    Article  MathSciNet  MATH  Google Scholar 

  • Smith RP, Eppinger SD (1997) Identifying controlling features of engineering design iteration. Manag Sci 43(3):276–293

    Article  MATH  Google Scholar 

  • Vazquez A, Rácz B, Lukács A, Barabasi AL (2007) Impact of non-Poissonian activity patterns on spreading processes. Phys Rev Lett 98(15):158702

    Article  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442

    Article  MATH  Google Scholar 

  • Xiao R, Chen T, Ju C (2011) Research on product development iterations based on feedback control theory in a dynamic environment. Int J Innov Comput Inf Control 7(5):2669–2688

    Google Scholar 

  • Yassine AA, Naoum-Sawaya J (2016) Architecture, performance, and investment in product development networks. J Mech Des 139(1):011101

    Article  Google Scholar 

  • Yassine A, Joglekar N, Braha D, Eppinger S, Whitney D (2003) Information hiding in product development: the design churn effect. Res Eng Des 14(3):145–161

    Article  Google Scholar 

  • Yu TL, Yassine AA, Goldberg DE (2007) An information theoretic method for developing modular architectures using genetic algorithms. Res Eng Des 18(2):91–109

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded in part by JSPS KAKENHI Grant number 18K13777 and the open collaborative research program at National Institute of Informatics (NII) Japan (FY2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Ogura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogura, M., Harada, J., Kishida, M. et al. Resource optimization of product development projects with time-varying dependency structure. Res Eng Design 30, 435–452 (2019). https://doi.org/10.1007/s00163-019-00316-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00163-019-00316-6

Keywords

Navigation