Skip to main content
Log in

Event-Triggered Adaptive Neural Network Control of Manipulators with Model-Based Weights Initialization Method

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

In the paper, a novel controller is proposed to reach better control performance for manipulator system with unknown dynamics. We notice the initial weights of neural network may have influence to control performance in neural network controller. A casual selection of the initial weights may cause poorer production quality and result in consumption of more energy. A natural way is to give neural network values close to the ideal values, which is developed through estimating system parameters by common adaptive controller. In the proposed controller, precautions are considered in case of large tracking error, neural network approximating capability is ensured, input dimension is reduced and a novel weights decay term is given. Simulation and experiment results show that these techniques result in improvement in accuracy and saving of energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\({\mathbb{R}}\) :

Set of real numbers

0n :

n-Dimensional null vector

m×n :

m × n-Dimensional ones matrix

I n :

n-Dimensional identity matrix

σ(·):

Sigmoid function

tanh (·):

Hyperbolic function

H(·):

Right-continuous Heaviside function

δ(·):

Dirac delta function

\(\bar{\sigma }\left( x \right)\) :

[1, σ(x)T]T

\(\bar{\sigma }^{\prime}\left( x \right)\) :

[0ndiag(σ(x))]

⊗ :

Kronecher product

⊙ :

Hadmard product

Tr(A):

Trace of matrix A

A‖:

Frobenius norm of matrix A

min (A):

Minimum value of matrix A

max (A):

Maximum value of matrix A

λmin(A):

Minimum eigenvalue of matrix A

λmax(A):

Maximum eigenvalue of matrix A

A > ( ≥ )0:

Matrix A is positive (semi-)definite

\({\text{Proj}}\left( {A,b,c} \right)\) :

cH( - c)H(‖A‖ - b)A/‖A2

References

  1. Annaswamy, A. M., Skantze, F. P., & Loh, A. P. (1998). Adaptive control of continuous time systems with convex/concave parametrization. Automatica,34(9), 1153.

    Article  MathSciNet  MATH  Google Scholar 

  2. Chaoui, H., Sicard, P., & Gueaieb, W. (2009). ANN-based adaptive control of robotic manipulators with friction and joint elasticity. IEEE Transactions on Industrial Electronics,56(8), 3147–3187.

    Article  Google Scholar 

  3. Cheng, L., Hou, Z. G., & Tan, M. (2009). Adaptive neural network tracking control for manipulators with uncertain kinematics, dynamics and actuator model. Automatica,45(10), 2312–2318.

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheng, L., Hou, Z. G., et al. (2010). Neural-network-based adaptive leader-following control for multiagent systems with uncertainties. IEEE Transactions on Neural Networks,21(8), 1351–1358.

    Article  Google Scholar 

  5. Cho, G. R., Kim, S., & Kim, J. (2018). Backlash compensation for accurate control of biopsy needle manipulators having long cable transmission. International Journal of Precision Engineering and Manufacturing,19(5), 675–684.

    Article  Google Scholar 

  6. Funahashi, K. (1989). On the approximate realization of continuousmappings by neural networks. Neural Networks,2(3), 183–192.

    Article  Google Scholar 

  7. Gao, W. Z., & Selmic, R. R. (2006). Neural network control of a class of nonlinear systems with actuator saturation. IEEE Transactions on Neural Networks,17(1), 147–156.

    Article  Google Scholar 

  8. Ge, S. S., Hang, C. C., & Zhang, T. (1999). Nonlinear adaptive control using neural networks and its application to CSTR systems. Journal of Process Control,9(4), 313–323.

    Article  Google Scholar 

  9. He, W., Amoateng, D. O., et al. (2017). Adaptive neural network control of a robotic manipulator with unknown backlash-like hysteresis. IET Control Theory A.,11(4), 567–575.

    Article  MathSciNet  Google Scholar 

  10. He, W., David, A. O., et al. (2016). Neural network control of a robotic manipulator with input deadzone and output constraint. IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews,46(6), 759–770.

    Article  Google Scholar 

  11. Hecht-Nielsen, R. (1992). Theory of the backpropagation neural network. Neural Networks for Perception,1(1), 65–93.

    Article  Google Scholar 

  12. Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science,313(5786), 504–507.

    Article  MathSciNet  MATH  Google Scholar 

  13. Hsu, S. H., & Fu, L. C. (2006). A fully adaptive decentralized control of robot manipulators. Automatica,42(10), 1761–1767.

    Article  MATH  Google Scholar 

  14. Huang, G. B. (2003). Learning capability and storage capacity of two-hidden layer feed forward networks. IEEE Transactions on Neural Networks,14(2), 274–281.

    Article  MathSciNet  Google Scholar 

  15. Huang, S. N., Tan, K. K., & Lee, T. H. (2000). Adaptive friction compensation using neural network approximations. IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews,30(4), 551–557.

    Article  Google Scholar 

  16. Islam, S., & Liu, X. P. (2011). Robust sliding mode control for robot manipulators. IEEE Transactions on Industrial Electronics,58(6), 2444–2453.

    Article  Google Scholar 

  17. Jiang, C., Wu, T., et al. (2019). Estimation of energy and time savings in optical glass manufacturing when using ultrasonic vibration-assisted grinding. International Journal of Precision Engineering and Manufacturing-Green Technology,6(1), 1–9.

    Article  Google Scholar 

  18. Jiang, N., Xu, J., & Zhang, S. (2018). Neural network control of networked redundant manipulator system with weight initialization method. Neurocomputing,307, 117–129.

    Article  Google Scholar 

  19. Jiang, N., Xu, J., & Zhang, S. (2018). Distributed adaptive synchronization control with friction compensation of networked lagrange systems. International Journal of Control, Automation and Systems,16(3), 1038–1048.

    Article  Google Scholar 

  20. Kang, H. S., Lee, J. Y., et al. (2016). Smart manufacturing: Past research, present findings and future directions. International Journal of Precision Engineering and Manufacturing-Green Technology,3(1), 111–128.

    Article  Google Scholar 

  21. Kim, D., Kim, T. J. Y., et al. (2018). Smart machining process using machine learning: A review and perspective on machining industry. International Journal of Precision Engineering and Manufacturing-Green Technology,5(4), 555–568.

    Article  Google Scholar 

  22. Kim, Y. H., & Lewis, F. L. (1999). Neural network output feedback control of robot manipulators. IEEE Transactions on Robotics and Automation,15(2), 301–309.

    Article  Google Scholar 

  23. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. NIPS,25, 1097–1105.

    Google Scholar 

  24. Lee, G., Sul, S. K., & Kim, J. (2015). Energy-saving method of parallel mechanism by redundant actuation. International Journal of Precision Engineering and Manufacturing-Green Technology,2(4), 345–354.

    Article  Google Scholar 

  25. Lewis, F. L., Dawson, D. M., & Adballah, C. T. (1993). Control of robot manipulators. London: Macmillan Publishing Company.

    Google Scholar 

  26. Lewis, F. L., Yesildirek, A. & Liu, K. (1993). Neural net robot controller with guaranteed stability. In International Conference on Industrial Fuzzy Control and Intelligent Systems. IEEE, pp. 103–108.

  27. Park, S. H., & Han, S. I. (2011). Robust-tracking control for robot manipulator with deadzone and friction using backstepping and RFNN controller. IET Control Theory and Applications,5(12), 1397–1417.

    Article  MathSciNet  Google Scholar 

  28. Pham, A., & Ahn, H. (2018). High precision reducers for industrial robots driving 4th industrial revolution: State of arts, analysis, design, performance evaluation and perspective. International Journal of Precision Engineering and Manufacturing-Green Technology,5(4), 519–533.

    Article  Google Scholar 

  29. Slotine, J. J. E., & Li, W. P. (1987). On the adaptive-control of robot manipulators. The International Journal of Robotics Research,6(3), 49–59.

    Article  Google Scholar 

  30. Slotine, J. J. E., & Li, W. P. (1988). Adaptive manipulator control: A case study. IEEE Transactions on Automatic Control,33(11), 995–1003.

    Article  MATH  Google Scholar 

  31. Tayebi, A. (2004). Adaptive iterative learning control for robot manipulators. Automatica,40(7), 1195–1203.

    Article  MathSciNet  MATH  Google Scholar 

  32. Tran, X., & Kang, H. (2015). Adaptive hybrid high-order terminal sliding mode control for MIMO uncertain nonlinear systems and its application to robot manipulators. International Journal of Precision Engineering and Manufacturing,16(2), 255–266.

    Article  Google Scholar 

  33. Tran, M. D., & Kang, H. J. (2016). A novel adaptive finite-time tracking control for robotic manipulators using nonsingular terminal sliding mode and RBF neural networks. International Journal of Precision Engineering and Manufacturing,17(7), 863–870.

    Article  Google Scholar 

  34. Wai, R. J. (2003). Tracking control based on neural network strategy for robot manipulator. Neurocomputing,51(7–9), 425–445.

    Article  Google Scholar 

  35. Wu, X., Zhou, J., et al. (2013). Impulsive synchronization motion in networked open-loop multibody systems. Multibody System Dynamics,30(1), 37–52.

    Article  MathSciNet  MATH  Google Scholar 

  36. Yang, C., Teng, B., et al. (2017). Global adaptive tracking control of robot manipulators using neural networks with finite-time learning convergence. International Journal of Control, Automation,15(4), 1916–1924.

    Article  Google Scholar 

  37. Yu, J., Ji, J., et al. (2017). Adaptive formation control of networked Lagrangian systems with a moving leader. Nonlinear Dynamics,90(1), 1–12.

    Article  MathSciNet  Google Scholar 

  38. Yu, J., Ji, J., et al. (2018). Formation control with collision avoidance for uncertain networked Lagrangian systems via adaptive gain techniques. IET Control Theory & Applications,12(10), 1393–1401.

    Article  MathSciNet  Google Scholar 

  39. Yu, S. H., Yu, X. H., et al. (2005). Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica,41(11), 1957–1964.

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, S., Lei, M. J., et al. (2016). Adaptive neural network control of coordinated robotic manipulators with output constraint. IET Control Theory and Applications,10(17), 2271–2278.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 91748205, 11772229, 11872277) and the Fundamental Research Funds for the Central Universities. The authors thank the reviewers for their valuable suggestions to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, N., Xu, J. & Zhang, S. Event-Triggered Adaptive Neural Network Control of Manipulators with Model-Based Weights Initialization Method. Int. J. of Precis. Eng. and Manuf.-Green Tech. 7, 443–454 (2020). https://doi.org/10.1007/s40684-019-00095-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00095-4

Keywords

Navigation