Skip to main content
Log in

Autophagy in Hepatocellular Carcinoma-29 after Single or Combined Administration of Lithium Carbonate and Rapamycin

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The role of autophagy in the development and progression of hepatocellular carcinoma (HCC) is ambiguous and still little known. Autophagy stimulation may be of exceptional interest in antitumor pharmacotherapy of HCC. Rapamycin and lithium are typical inducers of autophagy. The aim of this study was to compare the level of autophagy in hepatocellular carcinoma-29 (HCC-29) cells after single and combined administration of lithium carbonate and rapamycin. Autolysosomes formation and significant increase of LC3 beta (+)– and LAMP1 (+)– autophagic structures were revealed in HCC-29 cells after lithium carbonate and rapamycin coadministration by transmission electron microscopy and immunofluorescence analysis. Using this combination of drugs may be a promising strategy for HCC chemotherapy, since it will allow the integration of various cellular signaling pathways that regulate autophagy and apoptosis in tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ávalos, Y., Canales, J., Bravo-Sagua, R., Criollo, A., Lavandero, S., and Quest, A.F., Tumor suppression and promotion by autophagy, Biomed. Res. Int., 2014, p. 603980. https://doi.org/10.1155/2014/603980

  2. Bento, C.F., Renna, M., Ghislat, G., Puri, C., Ashkenazi, A., Vicinanza, M., Menzies, F.M., and Rubinsztein, D.C., Mammalian autophagy: how does it work?, Annu. Rev. Biochem., 2016, vol. 85, pp. 685–713.

    Article  CAS  Google Scholar 

  3. Bgatova, N.P., Gavrilova, Yu.S., Lykov, A.P., Solovieva, A.O., Makarova, V.V., Borodin, Yu.I., and Konenkov, V.I., Apoptosis and autophagy in hepatocarcinoma cells induced by different forms of lithium salts, Cell Tissue Biol., 2017, vol. 11, no. 4, pp. 261–267.

    Article  Google Scholar 

  4. Cuervo, A.M. and Wong, E., Chaperone-mediated autophagy: roles in disease and aging, Cell Res., 2014, vol. 1, pp. 92–104.

    Article  Google Scholar 

  5. Dash, S., Chava, S., Chandra, P.K., Aydin, Y., Balart, L.A., and Wu, T., Autophagy in hepatocellular carcinomas: from pathophysiology to therapeutic response, Hepat. Med., 2016, vol. 8, pp. 9–20.

    Article  Google Scholar 

  6. DeYoung, M.P., Horak, P., Sofer, A., Sgroi, D., and Ellisen, L.W., Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling, Genes. Dev., 2008, vol. 2, pp. 239–251.

    Article  Google Scholar 

  7. Gavrilova, Y.S., Bgatova, N.P., Solov’eva, A.O., Trifonova, K.E., Lykov, A.P., Borodin, Y.I., and Konenkov, V.I., Target cells for lithium in different forms within a heterogeneous hepatocarcinoma-29 population, Cell Tissue Biol., 2016, vol. 10, no. 4, pp. 284–289.

    Article  Google Scholar 

  8. Germano, D. and Daniele, B., Systemic therapy of hepatocellular carcinoma: current status and future perspectives, World J. Gastroenterol., 2014, vol. 12, pp. 3087–3099.

    Article  Google Scholar 

  9. Huang, J. and Manning, B.D., The TSC1-TSC2 complex: a molecular switchboard controlling cell growth, Biochem. J., 2008, vol. 2, pp. 179–190.

    Article  Google Scholar 

  10. Inoki, K., Zhu, T., and Guan, K.L., TSC2 mediates cellular energy response to control cell growth and survival, Cell, 2003a, vol. 5, pp. 577–590.

    Article  Google Scholar 

  11. Inoki, K., Li, Y., Xu, T., and Guan, K.L., Rheb GTPase is a direct target of TSC2 GAP activity and regulates MTOR signaling, Genes Dev., 2003b, vol. 15, pp. 1829–1834.

    Article  Google Scholar 

  12. Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., Zhang, X., Yang, Q., Bennett, C., Harada, Y., Stankunas, K., Wang, C.Y., He, X., MacDougald, O.A., You, M., Williams, B.O., and Guan, K.L., TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth, Cell, 2006, vol. 126, pp. 955–968.

    Article  CAS  Google Scholar 

  13. Kaledin, V.I., Zhukova, N.A., Nikolin, V.P. Popova, N.A., Belyaev, M.D., Baginskaya, N.V., Litvinova, E.A., Tolstikova, T.G., Lushnikova, E.L., and Semenov, D.E., Hepatocellular carcinoma-29—metastatic transplantable tumor of mice causing cachexia, Bull. Exp. Biol. Med., 2009, vol. 148, no. 12, pp. 664–669.

    Article  Google Scholar 

  14. Li, Y.Y., Feun, L.G., Thongkum, A., Tu, C.H., Chen, S.M., Wangpaichitr, M., Wu, C., Kuo, M.T., and Savaraj, N., Autophagic mechanism in anti-cancer immunity: its pros and cons for cancer therapy, Int. J. Mol. Sci., 2017, vol. 18. https://doi.org/10.3390/ijms18061297

  15. Liu, L., Liao, J.Z., He, X.X., and Li, P.Y., The role of autophagy in hepatocellular carcinoma: friend or foe, Oncotarget, 2017, vol. 34, pp. 57 707–57 722.

    Google Scholar 

  16. Manning, B.D., Tee, A.R., Logsdon, M.N., Blenis, J., and Cantley, L.C., Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway, Mol. Cell, 2002, vol. 1, pp. 151–62.

    Article  Google Scholar 

  17. Noda, T. and Ohsumi, Y., TOR, a phosphatidylinositol kinase homologue, controls autophagy in yeast, J. Biol. Chem., 1998, vol. 273, pp. 3963–3966.

    Article  CAS  Google Scholar 

  18. Parzych, K.R. and Klionsky, D.J., An overview of autophagy: morphology, mechanism, and regulation, Antioxid. Redox. Signal., 2014, vol. 3, pp. 460–473.

    Article  Google Scholar 

  19. Quiroz, J.A., Gould, T.D., Manji, and H.K., Molecular Effects of lithium, J. Mol. Interv., 2004, vol. 5, pp. 259–272.

    Article  Google Scholar 

  20. Russo, M. and Russo, G.L., Autophagy inducers in cancer, Biochem. Pharmacol., 2018, vol. 153, pp. 51–61.

    Article  CAS  Google Scholar 

  21. Sade, Y., Toker, L., Kara, N.Z., Einat, H., Rapoport, S., Moechars, D., Berry, G.T., Bersudsky, Y., and Agam, G., IP3 accumulation and/or inositol depletion: two downstream lithium’s effects that may mediate its behavioral and cellular changes, Transl. Psychiatry, 2016, vol. 6. e968. https://doi.org/10.1038/tp.2016.217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sarkar, S., Floto, R.A., Berger, Z., Imarisio, S., Cordenier, A., Pasco, M., Cook, L.J., and Rubinsztein, D.C., Lithium induces autophagy by inhibiting inositol monophosphatase, J. Cell Biol., 2005, vol. 170, pp. 1101–1111.

    Article  CAS  Google Scholar 

  23. Sarkar, S., Krishna, G., Imarisio, S., Saiki, S., O’Kane, C.J., and Rubinsztein, D.C., A rational mechanism for combination treatment of huntington’s disease using lithium and rapamycin, Hum. Mol. Genet., 2008, vol. 2, pp. 170–178.

    Article  Google Scholar 

  24. Sarkar, S., Ravikumar, B., Floto, R.A., and Rubinsztein, D.C., Rapamycin and MTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies, Cell Death Differ., 2009, vol. 1, pp. 46–56.

    Article  Google Scholar 

  25. Sato, T., Nakashima, A., Guo, L., Coffman, K., and Tamanoi, F., Single amino-acid changes that confer constitutive activation of mTOR are discovered in human cancer, Oncogene, 2010, vol. 18, pp. 2746–2752.

    Article  Google Scholar 

  26. Shoshani, T.Faerman, A., Mett, I., Zelin, E., Tenne, T., Gorodin, S., Moshel, Y., Elbaz, S., Budanov, A., Chajut, A., Kalinski, H., Kamer, I., Rozen, A., Mor, O., Keshet, E., Leshkowitz, D., Einat, P., Skaliter, R., and Feinstein, E., Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis, Mol. Cell Biol., 2002, vol. 7, pp. 2283–2293.

    Article  Google Scholar 

  27. Song, M.J. and Bae, S.H., Newer treatments for advanced hepatocellular carcinoma, Korean J. Intern. Med., 2014, vol. 2, pp. 149–155.

    Article  Google Scholar 

  28. Taskaeva, Iu. and Bgatova, N., Ultrastructural and immunofluorescent analysis of lithium effects on autophagy in hepatocellular carcinoma cells, Asian Pac. J. Cancer Biol., 2018, vol. 3, pp. 83–87.

    CAS  Google Scholar 

  29. Taskaeva, Iu.S. and Bgatova, N.P., Ultrastructural changes in hepatocellular carcinoma-29 cells with lithium carbonate introduction in vivo, Bull. Exp. Biol. Med., 2019, vol. 167, no. 1, pp. 94–98.

    Article  Google Scholar 

  30. Vicencio, J.M., Ortiz, C., Criollo, A., Jones, A.W., Kepp, O., Galluzzi, L., Joza, N., Vitale, I., Morselli, E., Tailler, M., Castedo, M., Maiuri, M.C., Molgó, J., Szabadkai, G., Lavandero, S., and Kroemer, G., The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with beclin 1, Cell Death Differ., 2009, vol. 16, pp. 1006–1017.

    Article  CAS  Google Scholar 

  31. Yang, Z. and Klionsky, D.J., An overview of the molecular mechanism of autophagy, Curr. Top. Microbiol. Immunol., 2009, vol. 335, pp. 1–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yin, Z., Pascual, C., and Klionsky, D.J., Autophagy: machinery and regulation, Microb. Cell., 2016, vol. 12, pp. 588–596.

    Article  Google Scholar 

  33. Zhi, X. and Zhong, Q., Autophagy in cancer, F1000Prime Rep., 2015, vol. 7, p. 18. https://doi.org/10.12703/P7-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported with financing of the Novosibirsk Scientific-Research Institute of Clinical and Experimental Lymphology as part of a state order, no. 0324-2019-0045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iu. S. Taskaeva.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

AUTHOR CONTRIBUTIONS

The concept and design of the study, as well as the analysis and interpretation of the data, were carried out by Iu.S. Taskaeva and N.P. Bgatova, collection and processing of material were done by Iu.S. Taskaeva and A.O. Solovieva, and statistical data processing and paper writing were done by Iu.S. Taskaeva.

Additional information

Translated by I. Fridlyanskaya

Abbreviations: HCC—hepatocellular carcinoma, HCC-29—hepatocellular carcinoma-29, AKT—protein kinase B, GSK-3β—glycogen synthase kinase-3β, IMPase—inosytol monophosphatase, IP3—inositol-1,4,5-triphosphate, IP3R–IP3 receptor, mTOR—mammalian target for rapamycin, PI3K—phosphatidylinositol 3-kinase, TSC 1/2—tuberous sclerosis complex 1/2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taskaeva, I.S., Bgatova, N.P. & Solovieva, A.O. Autophagy in Hepatocellular Carcinoma-29 after Single or Combined Administration of Lithium Carbonate and Rapamycin. Cell Tiss. Biol. 13, 353–359 (2019). https://doi.org/10.1134/S1990519X19050079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X19050079

Keywords:

Navigation