Skip to main content
Log in

The Poincaré and related groups are algebraically determined Polish groups

  • Published:
Collectanea mathematica Aims and scope Submit manuscript

Abstract

The purpose of this paper is to prove a new topological fact about the Poincaré and related groups. IfG is a group, say that G is an algebraically determined Polish (i.e., complete separable metric topological) group if, wheneverH is a Polish group and ϕ:H → G is an algebraic isomorphism, then ϕ is a topological isomorphism. The proper Lorentz group, the proper orthochronous Lorentz group and the Heisenberg group are examples of Polish groups that are not algebraically determined. On the other hand it will be shown that the Lorentz group, the orthochronous Lorentz group and the Poincaré group and the other closely associated semi-direct products are algebraically determined Polish groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.G. Atim and R.R. Kallman, The infinite unitary, orthogonal and associated groups are algebraically determined polish groups, (preprint 2008).

  2. S. Banach,Théorie des Opérations Linéaires, Chelsea Publishing Company, New York, 1955.

    MATH  Google Scholar 

  3. H. Becker and A.S. Kechris,The Descriptive Set Theory of Polish Group Actions, London Mathematical Society Lecture Note Series232, Cambridge University Press, Cambridge, 1996.

    MATH  Google Scholar 

  4. P. Gartside and B. Peji, Uniqueness of Polish group topology,Topology Appl. 155 (2008), 992–999.

    Article  MATH  MathSciNet  Google Scholar 

  5. F. Hausdorff, Über innere Abbildungen,Fund. Math. 23 (1934), 279–291.

    Google Scholar 

  6. S. Helgason,Differential Geometry and Symmetric Spaces, Academic Press, New York-London, 1962.

    MATH  Google Scholar 

  7. R.R. Kallman, The topology of compact simple Lie groups is essentially unique,Advances in Math. 12 (1974), 416–417.

    Article  MATH  MathSciNet  Google Scholar 

  8. R.R. Kallman, A uniqueness result for topological groups,Proc. Amer. Math. Soc. 54 (1976), 439–440.

    MATH  MathSciNet  Google Scholar 

  9. R.R. Kallman, A uniqueness result for the infinite symmetric group,Studies in Analysis, 321–322, Adv. in Math. Suppl. Stud.4, Academic Press, New York-London, 1978.

    Google Scholar 

  10. R.R. Kallman, A uniqueness result for a class of compact connected groups,Conference in modern analysis and probability (New Haven, Conn., 1982), 207–212, Contemp. Math.26, Amer. Math. Soc., Providence, RI, 1984.

    Google Scholar 

  11. R.R. Kallman, Uniqueness results for theax+b group and related algebraic objects,Fund. Math. 12 (1984), 255–262.

    MathSciNet  Google Scholar 

  12. R.R. Kallman, Uniqueness results for groups of measure preserving transformations,Proc. Amer. Math. Soc. 20 (1985), 87–90.

    MathSciNet  Google Scholar 

  13. R.R. Kallman, Uniqueness results for homeomorphism groups,Trans. Amer. Math. Soc. 295 (1986), 389–396.

    MATH  MathSciNet  Google Scholar 

  14. A.S. Kechris,Classical descriptive set theory, Graduate Texts in Mathematics156, Springer-Verlag, New York, 1995.

    MATH  Google Scholar 

  15. A.S. Kechris and Ch. Rosendahl, Turbulence, amalgamation, and generic automorphisms of homogeneous structures,Proc. Lond. Math. Soc. (3) 94 (2007), 300–350.

    Google Scholar 

  16. G.M. Mackey, Borel structure in groups and their duals,Trans. Amer. Math. Soc. 85 (1957), 134–165.

    MATH  MathSciNet  Google Scholar 

  17. D.E. Miller, On the measurability of orbits in Borel actions,Proc. Amer. Math. Soc. 63 (1977), 165–170.

    MATH  MathSciNet  Google Scholar 

  18. Ch. Rosendal, Automatic continuity in homeomorphism groups of compact 2-manifolds,Israel J. Math. 166 (2008), 349–367.

    Article  MATH  MathSciNet  Google Scholar 

  19. Ch. Rosendal and S. Solecki, Automatic continuity of homomorphisms and fixed points on metric compacta,Israel J. Math. 162 (2007), 349–371.

    Article  MATH  MathSciNet  Google Scholar 

  20. B.L. van der Waerden, Stetigkeitssätze für halbeinfache Liesche gruppen,Math. Z. 36 (1933), 780–786.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert R. Kallman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kallman, R.R., McLinden, A.P. The Poincaré and related groups are algebraically determined Polish groups. Collect. Math. 61, 337–352 (2010). https://doi.org/10.1007/BF03191237

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03191237

Keywords

MSC2000

Navigation