Skip to main content
Log in

Microbial Fingerprinting of Potential Biodegrading Organisms

  • Biology and Pollution (G O’Mullan and R Boopathy, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

The world is witnessing various pollutants in the environment since the last few decades that threaten human life. The biological responses to various pollutants show variations as the living system behaves differently in their sensitivities to the same types of pollutants. The relative response and activity depend upon the duration of exposure to the specific pollutant. It is impossible to stop various activities leading to environmental pollution; however, pollutants can be eliminated from the environment using the microorganisms. Application of biological processes can be executed in order to get rid of toxic pollutants through their biodegradation. The pollutants like hydrocarbons, heavy metals, chlorinated hydrocarbons, nitro-aromatic compounds, non-chlorinated herbicides and pesticides, organophosphates, radionuclides can lead to serious health and environmental problems. The main objective of this paper is to evaluate the effects of pollutants on the living beings and environment, microbial responses to pollution, and distribution of various biodegrading microorganisms in the environment. Profiling of biodegrading microorganisms, microbial biosensor to detect environmental pollution, and strain improvement through genetic manipulation to enhance the biodegradation process have been discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abbasian F, Lockington R, Mallavarapu M, Naidu R. A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Appl Biochem Biotechnol. 2015;176(3):670–99.

    CAS  Google Scholar 

  2. Ádám N, Monika JF, Leszek M, Barbara K, Jan K, Danuta SD, et al. Distribution of coal and coal combustion related organic pollutants in the environment of the Upper Silesian Industrial Region. Sci Total Environ. 2018;628-629:1462–88.

    Google Scholar 

  3. Ademola A, Vijaya R, Boris T. On-line monitoring of heavy metals-related toxicity with a microbial fuel cell biosensor. Biosens Bioelectron. 2019;132:382–90.

    Google Scholar 

  4. Aguiar-Pulido V, Huang W, Suarez-Ulloa V, Cickovski T, Mathee K, Narasimhan G. Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis. Evol Bioinformatics Online. 2016;12(Suppl 1):5–16.

    Google Scholar 

  5. Ajeng AS, Anis K, Sanro T, Yanni S, Haznan A. Mechanisms and optimization of oil palm empty fruit bunch as a pre-grown source for white-rot fungus to degrade DDT. J Environ Chem Eng. 2014;2:1410–5.

    Google Scholar 

  6. Allen JP, Atekwana EA, Duris JW, Werkema DD, Rossbach S. The microbial community structure in petroleum-contaminated sediments corresponds to geophysical signatures. Appl Environ Microbiol. 2007;73:2860–70.

    CAS  Google Scholar 

  7. Amatussalam A, Abubacker MN, Rajendran RB. In situ Carica papaya stem matrix and Fusarium oxysporum (NCBT-156) mediated bioremediation of chromium. Indian J Exp Biol. 2011;49:925–31.

    CAS  Google Scholar 

  8. Aravindhan R, Nair BU. Biological removal of carcinogenic Cr (VI) using mixed Pseudomonas strains. Bioresour Technol. 2006;11:11–7.

    Google Scholar 

  9. Arya R, Sharma AK. Bioremediation of carbendazim, a benzimidazole fungicide using Brevibacillus borstelensis and Streptomyces albogriseolus together. Curr Pharm Biotechnol. 2015;17:185–9.

    Google Scholar 

  10. Ashis K, Mukherjee PB, Bhim BB, Abhishek C, Bhargab K. A comparative intracellular proteomic profiling of Pseudomonas aeruginosa strain ASP-53 grown on pyrene or glucose as sole source of carbon and identification of some key enzymes of pyrene biodegradation pathway. J Proteome. 2017;167:25–35.

    Google Scholar 

  11. Azarbad H, Niklińska M, Nikiel K, van Straalen NM, Röling WFM. Functional and compositional responses in soil microbial communities along two metal pollution gradients: does the level of historical pollution affect resistance against secondary stress. Biol Fertil Soils. 2015;51:879–90.

    CAS  Google Scholar 

  12. Banowetz GM, Gerald WW, Karen PD, Mark DA, Ann CK, Stephen MG, et al. Fatty acid methyl ester analysis to identify sources of soil in surface water. J Environ Qual. 2006;35:133–40.

    CAS  Google Scholar 

  13. Barra Caracciolo A, Topp E, Grenni P. Pharmaceuticals in the environment: biodegradation and effects on natural microbial communities. A review. J Pharm Biomed Anal. 2015;106:25–36.

    CAS  Google Scholar 

  14. Bathe S, Schwarzenbeck N, Hausner M. Bioaugmentation of activated sludge towards 3-chloroaniline removal with a mixed bacterial population carrying a degradative plasmid. Bioresour Technol. 2009;100:2902–9.

    CAS  Google Scholar 

  15. Bedade DK, Muley AB, Singhal RS. Magnetic cross-linked enzyme aggregates of acrylamidase from Cupriavidus oxalaticus ICTDB921 for biodegradation of acrylamide from industrial waste water. Bioresour Technol. 2018;272:137–45.

    Google Scholar 

  16. Bedade DK, Muley AB, Singhal RS. Magnetic cross-linked enzyme aggregates of acrylamidase from Cupriavidus oxalaticus ICTDB921 for biodegradation of acrylamide from industrial waste water. Bioresour Technol. 2019;272:137–45.

    CAS  Google Scholar 

  17. Belen C, José V, Francisco J, Fernandez M. Modelling aerobic biodegradation of atrazine and 2,4-dichlorophenoxy acetic acid by mixed-cultures. Bioresour Technol. 2017;243:1044–50.

    Google Scholar 

  18. Bernard EI, Stanley IRO, Grace OI, Ebere PA, Abraham OA, Ibe KE. Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. 2018; https://doi.org/10.1155/2018/2568038.

    Google Scholar 

  19. Bhalla N, Jolly P, Formisano N, Estrela P. Introduction to biosensors. Essays Biochem. 2016;60:1–8.

    Google Scholar 

  20. Bhatt M, Cajthaml T, Šašek V. Mycoremediation of PAH-contaminated soil. Folia Microbiol. 2002;47:255–8.

    CAS  Google Scholar 

  21. Bhunia B, Prasad Uday US, Oinam G, Mondal A, Bandyopadhyay TK, Tiwari ON. Characterization, genetic regulation, and production of cyanobacterial exopolysaccharides and its applicability for heavy metal removal. Carbohydr Polym. 2018;179:228–43.

    CAS  Google Scholar 

  22. Caracciolo AB, Paola B, Paola G. Fluorescence in situ hybridization in soil and water ecosystems: a useful method for studying the effect of xenobiotics on bacterial community structure. Toxicol Environ Chem. 2010;92:567–79.

    CAS  Google Scholar 

  23. Carmen T, Andreea-Florina G, George B, Silvia F. Emerging pollutants removal through advanced drinking water treatment: a review on processes and environmental performances assessment. J Clean Prod. 2018;197:1210–21.

    Google Scholar 

  24. Chakraborty J, Das S. Characterization and cadmium resistant gene expression of the biofilm-forming marine bacterium Pseudomonas aeruginosa JP-11. Environ Sci Pollut Res. 2014;21:14188–201.

    CAS  Google Scholar 

  25. Chakraborty J, Jana T, Saha S, Dutta TK. Ring-hydroxylating oxygenase database: a database of bacterial aromatic ring-hydroxylating oxygenases in the management of bioremediation and biocatalysis of aromatic compounds. Environ Microbiol Rep. 2014;6:519–23.

    CAS  Google Scholar 

  26. Chekroun KB, Sánchez E, Baghour M. The role of algae in bioremediation of organic pollutants. Int Res J Public Environ Health. 2014;1:19–32.

    Google Scholar 

  27. Chen Q, Wang CH, Deng SK, Wu YD, Li Y, Yao L, et al. Novel three-component Rieske non-heme iron oxygenase system catalyzing the Ndealkylation of chloroacetanilide herbicides in sphingomonads DC-6 and DC-2. Appl Environ Microbiol. 2014;420:5078–85.

    Google Scholar 

  28. Cheng M, Chen K, Guo S, Huang X, He J, Li S, et al. PbaR, an IclR-family transcriptional activator for the regulation of the 3-phenoxybenzoate 1′, 2′- dioxygenase gene cluster in Sphingobium wenxiniae JZ-1T. Appl Environ Microbiol. 2015;81(23):8084–92.

    CAS  Google Scholar 

  29. Clarissa W, Peet JJR, Sarina C. Can a metabolomics-based approach be used as alternative to analyse fatty acid methyl esters from soil microbial communities? Soil Biol Biochem. 2016;103:417–28.

    Google Scholar 

  30. Coulon F, Chronopoulou PM, Fahy A, Parsse S, Goni-Urriza M, Peperzak L. Central role of dynamic tidal biofilms dominated by aerobic hydrocarbonoclastic bacteria and diatoms in the biodegradation of hydrocarbons in coastal mudflats. Appl Environ Microbiol. 2012;78:3638–48.

    CAS  Google Scholar 

  31. Cuozzo SA, Fuentes MS, Bourguignon N, Benimeli CS, Amoroso MJ. Chlordane biodegradation under aerobic conditions by indigenous Streptomyces strains. Int Biodeterior Biodegradation. 2012;66:19–24.

    CAS  Google Scholar 

  32. Czaplicki LM, Gunsch CK. Reflection on molecular approaches influencing state-of-the-art bioremediation design: culturing to microbial community fingerprinting to omics. J Environ Eng. 2016;142:03116002. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001141.

    Article  CAS  Google Scholar 

  33. Dai C, Choi S. Technology and applications of microbial biosensor. Open J Appl Biosens. 2013;2:83–93.

    Google Scholar 

  34. Danni J, Piao X, Han W, Guangming Z, Danlian H, Ming C, et al. Strategies to improve metal organic frameworks photocatalyst’s performance for the degradation of organic pollutants. Coord Chem Rev. 2018;376:449–66.

    Google Scholar 

  35. Dave S, Damani M, Tipre D. Copper remediation by Eichhornia spp. and sulphate- reducing bacteria. J Hazard Mater. 2010;173:231–5.

    CAS  Google Scholar 

  36. DeAngelis KM, Cindy HW, Harry RB, Eoin LB, Romy C, Todd ZD, et al. PCR amplification-independent methods for detection of microbial communities by the high-density microarray PhyloChip. Appl Environ Microbiol. 2011;77:6313–22.

    CAS  Google Scholar 

  37. Dhiraj KC, Jaisoo K. New insights into bioremediation strategies for oil-contaminated soil in cold environments. Int Biodeterior Biodegradation. 2019;142:58–72.

    Google Scholar 

  38. Diaz E, Jimenez JI, Nogales J. Aerobic degradation of aromatic compounds. Curr Opin Biotechnol. 2013;24:431–42.

    CAS  Google Scholar 

  39. Diepens NJ, Arts GHP, Brock TCM, Smidt H, Van Den Brink PJ, Van Den Heuvel-Greve MJ, et al. Sediment toxicity testing of organic chemicals in the context of prospective risk assessment: a review. Crit Rev Environ Sci Technol. 2014;44:255–302.

    Google Scholar 

  40. Dosnon-Olette R, Trotel-Aziz P, Couderchet M, Eullaffroy P. Fungicides and herbicide removal in Scenedesmus cell suspensions. Chemosphere. 2010;79:117–23.

    CAS  Google Scholar 

  41. Duan XQ, Zheng JW, Zhang J, Hang BJ, He J, Li SP. Characteristics of a 3- phenoxybenzoic acid degrading-bacterium and the construction of a engineering bacterium. Huan Jing Ke Xue. 2011;32:240–6.

  42. Duran R, Bielen A, Paradžik T, Claire G, Emina P, Christine C, et al. Exploring Actinobacteria assemblages in coastal marine sediments under contrasted human influences in the West Istria Sea, Croatia. Environ Sci Pollut Res. 2015;22:15215–29.

    CAS  Google Scholar 

  43. Ekkhunnatham A, Jongsareejit B, Yamkunthong W, Wichitwechkarn J. Purification and characterization of methyl parathion hydrolase from Burkholderia cepacia capable of degrading organophosphate insecticides. World J Microbiol Biotechnol. 2012;28:1739–46.

    CAS  Google Scholar 

  44. Eriksson M, Sodersten E, Yu Z, Dalhammar G, Mohn WW. Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate reducing conditions in enrichment cultures from northern soils. Appl Environ Microbiol. 2003;69:275–84.

    CAS  Google Scholar 

  45. Fahrenfeld N, Zoeckler J, Widdowson M, Pruden A. Effect of biostimulants on 2,4,6-trinitrotoluene (TNT) degradation and bacterial community composition in contaminated aquifer sediment enrichments. Biodegradation. 2013;24:179–90.

    CAS  Google Scholar 

  46. Farshid G, Mahsa M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review. Chem Eng J. 2017;310:41–62.

    Google Scholar 

  47. Fierer N, Jackson JA, Vilgalys R, Jackson RB. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol. 2005;71:4117–20.

    CAS  Google Scholar 

  48. Foti R, Gnan S, Cornacchia D, Dileep V, Bulut-Karslioglu A, Diehl S, et al. Nuclear architecture organized by Rif1 underpins the replication-timing program. Mol Cell. 2016;61:260–73.

    CAS  Google Scholar 

  49. Fuchs G, Boll M, Heider J. Microbial degradation of aromatic compounds—from one strategy to four. Nat Rev Microbiol. 2011;9:803–16.

    CAS  Google Scholar 

  50. Gallo G, Piccolo LL, Renzone G, La Rosa R, Scaloni A, Quatrini P, et al. Differential proteomic analysis of an engineered Streptomyces coelicolor strain reveals metabolic pathways supporting growth on n-hexadecane. Appl Microbiol Biotechnol. 2012;94:1289–301.

    CAS  Google Scholar 

  51. Ganiyu OO, Keisuke M, Yi H, Mei-Fang C, Matthew OI, Olukayode OA, et al. Biotechnological remedies for the estuarine environment polluted with heavy metals and persistent organic pollutants. Int Biodeterior Biodegrad. 2017;119:614–25.

    Google Scholar 

  52. Garg UK, Kaur MP, Garg VK, Sud D. Removal of hexavalent Cr from aqueous solutions by agricultural waste biomass. J Hazard Mater. 2007;140:60–8.

    CAS  Google Scholar 

  53. Gentry TJ, Wickham GS, Schadt CW, He Z, Zhou J. Microarray applications in microbial ecology research. Microb Ecol. 2006;52:159–75.

    CAS  Google Scholar 

  54. Ghebremedhin B, Layer F, Konig W, Konig B. Genetic classification and distinguishing of Staphylococcus species based on different partial gap, 16 rRNA, hsp60, rpoB, sodA, and tuf gene sequences. J Clin Microbiol. 2008;46:1019–25.

    CAS  Google Scholar 

  55. Gotthard G, Hiblot J, Gonzalez D, Elias M, Chabriere E. Structural and enzymatic characterization of the phosphotriesterase OPHC2 from Pseudomonas pseudoalcaligenes. PLoS One. 2013;8(11):e77995. https://doi.org/10.1371/journal.pone.0077995.

    Article  CAS  Google Scholar 

  56. Gupta G, Chandra A, Varjani SJ, Banerjee C, Kumar V. Role of biosurfactants in enhancing the microbial degradation of pyrene. In: Varjani SJ, Agarwal AK, Gnansounou E, Gurunathan B, editors. Bioremediation: applications for environmental protection and management. Singapore: Springer Nature; 2018. p. 375–86.

    Google Scholar 

  57. Hang BJ, Hong Q, Xie XT, Huang X, Wang CH, He J, et al. SulE, a sulfonylurea herbicide de-esterification esterase from Hansschlegelia zhihuaiae S113. Appl Environ Microbiol. 2012;78:1962–8.

    CAS  Google Scholar 

  58. Harms G, Layton AC, Dionisi HM, Gregory IR, Garrett VM, Hawkins SA, et al. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ Sci Technol. 2003;37:343–51.

    CAS  Google Scholar 

  59. Hasselbach L, Ver Hoef J, Ford J, Neitlich P, Crecelius E, Berryman S, et al. Spatial patterns of cadmium and lead deposition on and adjacent to National Park Service lands in the vicinity of Red Dog Mine, Alaska. Sci Total Environ. 2005;348:211–30.

    CAS  Google Scholar 

  60. Holmes DE, Giloteaux L, Williams KH, Wrighton KC, Wilkins MJ, Thompson CA, et al. Enrichment of specific protozoan populations during in-situ bioremediation of uranium-contaminated groundwater. ISME J. 2013;7:1286–98.

    CAS  Google Scholar 

  61. Hongjie B, Mengfei C, Huan W, Zhilei T, Shiru J, Jiandong C. Biodegradation of polyvinyl alcohol using cross-linked enzyme aggregates of degrading enzymes from Bacillus niacini. Int Biodeterior Biodegradation. 2019;124:10–6.

    Google Scholar 

  62. Hou Y, Tao J, Shen W, Liu J, Li J, Li Y, et al. Isolation of the fenoxaprop-ethyl (FE)-degrading bacterium Rhodococcus sp. T1 and cloning of FE hydrolase gene feh. FEMS Microbiol Lett. 2011;323:196–203.

    CAS  Google Scholar 

  63. Hu M, Wang X, Wen X. Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis. Bioresour Technol. 2012;117:72–9.

    CAS  Google Scholar 

  64. Huang F, Dang Z, Guo CL, Lu GN, Gu RR, Liu HJ, et al. Biosorption of Cd (II) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium contaminated soil. Colloids Surf B: Biointerfaces. 2013;107:11–8.

    CAS  Google Scholar 

  65. Hugenholtz P. Exploring prokaryotic diversity in the genomic era. Genome Biol. 2002;3:reviews0003.1–8 (Last accessed: 01.06.2019).

    Google Scholar 

  66. Hui Q, Shaowei W, Huitao L, Yuan G, Tingting W, Yongshun H. Synthesis of an organic–inorganic polypyrrole/titanium (IV) biphosphate hybrid for Cr (VI) removal. J Mol Liq. 2016;215:402–9.

    Google Scholar 

  67. Javadian H. Application of kinetic, isotherm and thermodynamic models for the adsorption of Co(II) ions on polyaniline/polypyrrole copolymer nanofibers from aqueous solution. J Ind Eng Chem. 2014;20:4233–41.

    CAS  Google Scholar 

  68. Jean MCD, Laura DM, Rafael N, Rogelio N, Esperanza R. Enhancing pesticide degradation using indigenous microorganisms isolated under high pesticide load in bioremediation systems with vermicomposts. Bioresour Technol. 2016;214:234–41.

    Google Scholar 

  69. Jeevanantham S, Saravanan A, Hemavathy RV, Senthil KP, Yaashikaa PR, Yuvaraj D. Removal of toxic pollutants from water environment by phytoremediation: a survey on application and future prospects. Environ Technol Innov. 2019;13:264–76.

    Google Scholar 

  70. Jiao S, Zhang Z, Yang F, Lin Y, Chen W, Wei G. Temporal dynamics of microbial communities in microcosms in response to pollutants. Mol Ecol. 2016. https://doi.org/10.1111/mec.13978.

    CAS  Google Scholar 

  71. Jin R, Yang H, Zhang A, Wang J, Liu G. Bioaugmentation on decolorization of C.I. direct blue 71 using genetically engineered strain Escherichia coli JM109 (pGEX-AZR). J Hazard Mater. 2009;163:1123–8.

    CAS  Google Scholar 

  72. Jing W, Wei LO, Jie HH, Ghim WH. Inorganic-organic hybrid membranes for photocatalytic hydrogen generation and volatile organic compound degradation. Procedia Eng. 2017;215:202–10.

    Google Scholar 

  73. Jing F, Hongxiu L, Hongzhi Z, Minghung W, Shunqing X, Zongwei C. Association of prenatal exposure to organochlorine pesticides and birth size. Sci Total Environ. 2019;654:678–83.

    Google Scholar 

  74. Kavitha KN, Ganesh S, Ananda K. Enhanced biodegradation and kinetics of anthraquinone dye by laccase from an electron beam irradiated endophytic fungus. Int Biodeterior Biodegradation. 2018;132:241–50.

    Google Scholar 

  75. Kleikemper J, Schroth MH, Sigler WV, Schmucki M, Bernasconi SM, Zeyer J. Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon contaminated aquifer. Appl Environ Microbiol. 2002;68:1516–23.

    CAS  Google Scholar 

  76. Kong D, MacLeod M, Li Z, Cousins IT. Effects of input uncertainty and variability on the modelled environmental fate of organic pollutants under global climate change scenarios. Chemosphere. 2013;93:2086–93.

    CAS  Google Scholar 

  77. Kumari V, Yadav A, Haq I, Kumar S, Bharagava RN, Singh SK, et al. Genotoxicity evaluation of tannery effluent treated with newly isolated hexavalent chromium reducing Bacillus cereus. J Environ Manag. 2016;183:204–11.

    CAS  Google Scholar 

  78. Kun Y, Qiaoning W, Min L, Lingxin C. Microorganism remediation strategies towards heavy metals. Chem Eng J. 2019;360:1553–63.

    Google Scholar 

  79. Lara BM, Sanja A, Ruban K, Gülay M, Ashley EF. Functional characterization of Gram-negative bacteria from different genera as multiplex cadmium biosensors. Biosens Bioelectron. 2017;4:380–7.

    Google Scholar 

  80. Larentis M, Hoermann K, Lueders T. Fine-scale degrader community profiling over an aerobic/anaerobic redox gradient in a toluene contaminated aquifer. Environ Microbiol Rep. 2013;5:225–34.

    CAS  Google Scholar 

  81. Lauga B, Girardin N, Karama S, Le Ménach K, Budzinski H, Duran R. Removal of alachlor in anoxic soil slurries and related alteration of the active communities. Environ Sci Pollut Res. 2013;20:1089–105.

    CAS  Google Scholar 

  82. Laura F, Emilio R, Anthony SD, Sanromán MA, Pazos MM. Bacillus thuringiensis a promising bacterium for degrading emerging pollutants. Process Saf Environ Prot. 2016;101:19–26.

    Google Scholar 

  83. Leticia R, Patricia V, Mónica F, Jorge A, Alfons JMS, Juan ML, et al. Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters. Microbiol Res. 2012;167:581–9.

    Google Scholar 

  84. Li J, Weijian C, Ling Z. The characteristics and enzyme activities of 4-chlorophenol biodegradation by Fusarium sp. Bioresour Technol. 2011;102:2985–9.

    CAS  Google Scholar 

  85. Li Y, Chen Q, Wang CH, Cai S, He J, Huang X, et al. Degradation of acetochlor by consortium of two bacterial strains and cloning of a novel amidase gene involved in acetochlor-degrading pathway. Bioresour Technol. 2013;148:628–31.

    CAS  Google Scholar 

  86. Li D, Xu X, Yu H, Han X. Characterization of Pb2+ biosorption by psychrotrophic strain Pseudomonas sp. I3 isolated from permafrost soil of Mohe wetland in Northeast China. J Environ Manag. 2017;196:8–15.

    CAS  Google Scholar 

  87. Lin X, Kennedy D, Fredrickson J, Bjornstad B, Konopka A. Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site. Environ Microbiol. 2012;14:414–25.

    CAS  Google Scholar 

  88. Liu WT, Marsh TL, Cheng H, Forney LJ. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding16S rRNA. Appl Environ Microbiol. 1997;3:4516–22.

    Google Scholar 

  89. Liu B, Lei Y, Li B. A batch-mode cube microbial fuel cell based “shock” biosensor for wastewater quality monitoring. Biosens Bioelectron. 2014;62:308–14.

    CAS  Google Scholar 

  90. Louvado A, Gomes NCM, Simoes MMQ, Almeida A, Cleary DFR, Cunha A. Polycyclic aromatic hydrocarbons in deep sea sediments: microbepollutant interactions in a remote environment. Sci Total Environ. 2015;526:312–32.

    CAS  Google Scholar 

  91. Ludden C, Reuter S, Judge K, Gouliouris T, Blane B, Coll F, et al. Sharing of carbapenemase-encoding plasmids between Enterobacteriaceae in UK sewage uncovered by MinION sequencing. Microb Genom. 2017;3(7):e000114. https://doi.org/10.1099/mgen.0.000114.

    Article  Google Scholar 

  92. Luo X, Yang JA. Survey on pollution monitoring using sensor networks in environment protection. J Sens. 2019; Article ID 6271206:1–11. https://doi.org/10.1155/2019/6271206.

    Google Scholar 

  93. Ma J, Nossa CW, Alvarez PJJ. Groundwater ecosystem resilience to organic contaminations: microbial and geochemical dynamics throughout the 5-year life cycle of a surrogate ethanol blend fuel plume. Water Res. 2015;80:119–29.

    CAS  Google Scholar 

  94. Mahmoud MS, Mohamed SA. Calcium alginate as an eco-friendly supporting material for baker’s yeast strain in chromium bioremediation. HRBC J. 2017;13:245–54.

    Google Scholar 

  95. Marina GP, Kele ACV, Bruno NP, Mayara CSB, Glaucia MP, Gustavo M. Newly isolated microorganisms with potential application in biotechnology. Biotechnol Adv. 2019;37:319–39.

    Google Scholar 

  96. Martorell MM, Fernandez PM, Farina JI, Figueroa LIC. Cr (VI) reduction by cell-free extracts of Pichia jadinii and Pichia anomala isolated from textile dye factory effluents. Int Biodeterior Biodegrad. 2012;71:80–5.

    CAS  Google Scholar 

  97. Mauffret A, Baran N, Joulian C. Effect of pesticides and metabolites on groundwater bacterial community. Sci Total Environ. 2017a;576:879–87.

    CAS  Google Scholar 

  98. Meckenstock RU, Boll M, Mouttaki H, Koelschbach JS, Tarouco PC, Weyrauch P, et al. Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J Mol Microbiol Biotechnol. 2016;26:92–118.

    CAS  Google Scholar 

  99. Mehta A, Bodh U, Gupta R. Fungal lipases: a review. J Breath Res. 2017;8:58–77.

    CAS  Google Scholar 

  100. Mikolajczyk OM, Ewa K, Dorota W, Tadeusz A. Biodegradation of diesel oil hydrocarbons enhanced with Mucor circinelloides enzyme preparation. Int Biodeterior Biodegradation. 2015;104:142–8.

    Google Scholar 

  101. Misson B, Garnier C, Lauga B, Dang DH, Ghiglione JF, Mullot JU, et al. Chemical multi-contamination drives benthic prokaryotic diversity in the anthropized Toulon Bay. Sci Total Environ. 2016;556:319–29.

    CAS  Google Scholar 

  102. Mohanty SS, Jena HM. Degradation kinetics and mechanistic study on herbicide bioremediation using hyper Butachlor-tolerant pseudomonas putida G3. Process Saf Environ Prot. 2019;125:172–81.

    CAS  Google Scholar 

  103. Muhammad B, Muhammad A, Tahir R, Yuping Z, Hafiz MNI. Emerging contaminants of high concern and their enzyme-assisted biodegradation—a review. Environ Int. 2019;124:336–53.

    Google Scholar 

  104. Musharib K, Irene MCL. A holistic review of hydrogel applications in the adsorptive removal of aqueous pollutants: recent progress, challenges, and perspectives. Water Res. 2016;106:259–71.

    Google Scholar 

  105. Nan W, Chunshan G, Peijun Z, Lili G, Yunxiang W, Yue Q, et al. Effect of Bacillus cereus against cadmium induced hematological disturbances and immunosuppression in Carassius auratus gibelio. Fish Shellfish Immunol. 2019;89:141–8.

    Google Scholar 

  106. Nazia K, Asif J, Muhammad IA. Polymeric pollutant biodegradation through microbial oxidoreductase: a better strategy to safe environment. Int J Biol Macromol. 2017;105:9–16.

    Google Scholar 

  107. Olaniran AO, Hiralal L, Pillay B. Whole-cell bacterial biosensors for rapid and effective monitoring of heavy metals and inorganic pollutants in wastewater. J Environ Monit. 2011;13:2914–20.

    CAS  Google Scholar 

  108. Oliver JD. The viable but non culturable state in bacteria. J Microbiol. 2005;43:93–100.

    Google Scholar 

  109. Pablo MF, Silvana CV, Anahí RB, Elías LC, Lucía ICF. Bioremediation strategies for chromium removal: current research, scale-up approach and future perspectives. Chemosphere. 2018;20:139–48.

    Google Scholar 

  110. Panyachanakul T, Bodeesorn S, Saisamorn L, Wanlapa L, Vichien K, Sukhumaporn K. Development of biodegradation process for poly (DL-lactic acid) degradation by crude enzyme produced by Actinomadura keratinilytica strain T16-1. Electron J Biotechnol. 2019;40:52–7.

    CAS  Google Scholar 

  111. Paola G, Alicia G, Anna BC, Carmen F, Mar N, Raquel V, et al. A new fluorescent oligonucleotide probe for in situ detection of s-triazine-degrading Rhodococcus wratislaviensis in contaminated groundwater and soil samples. Water Res. 2009;43:2999–3008.

    Google Scholar 

  112. Parmar TK, Rawtan D, Agrawal YK. Bioindicators: the natural indicator of environmental pollution. Front Life Sci. 2016;9:110–8.

    CAS  Google Scholar 

  113. Peng M, Xiaoxue Z, Qiuyu W. Bacterial community diversity of oil-contaminated soils assessed by high throughput sequencing of 16S rRNA genes. Int J Environ Res Public Health. 2015;12:12002–15.

    CAS  Google Scholar 

  114. Prasad B, Sumathi S. Biodegradation of dimethyl phthalate ester using free cells, entrapped cells of Variovorax sp. BS1 and cell free enzyme extracts: a comparative study. Int Biodeterior Biodegradation. 2015;97:179–87.

    CAS  Google Scholar 

  115. Puglisi E, Hamon R, Vasileiadis S, Coppolecchia D, Trevisan M. Adaptation of soil microorganisms to trace element contamination: a review of mechanisms, methodologies, and consequences for risk assessment and remediation. Crit Rev Environ Sci Technol. 2012;42:2435–70.

    Google Scholar 

  116. Raina MM, Terry JG. Microorganisms and organic pollutants. In: Ian LP, Charles PG, editors. Terry JG, editors. Environmental microbiology. Cambridge: Academic Press; 2015. p. 377–413.

  117. Ram NB, Diane P, Saxena G, Sikandar IM. Applications of metagenomics in microbial bioremediation of pollutants: from genomics to environmental cleanup. In: Surajit D, Hirak RD, editors. Microbial diversity in the genomic Era. UK: Academic Press; 2019. p. 459–77.

    Google Scholar 

  118. Ramond JB, Berthe T, Duran R, Petit F. Comparative effects of mercury contamination and wastewater effluent input on Gram-negative merA gene abundance in mudflats of an anthropized estuary (Seine, France): a microcosm approach. Res Microbiol. 2009;160:10–8.

    CAS  Google Scholar 

  119. Rasheed T, Nabeel F, Adeel M, Bilal M, Iqbal HM. “Turn-on” fluorescent sensor-based probing of toxic Hg (II) and Cu (II) with potential intracellular monitoring. Biocatal Agric Biotechnol. 2019;17:696–701.

    Google Scholar 

  120. Rastogi G, Sani RK. Molecular techniques to assess microbial community structure, function, and dynamics in the environment. In: Ahmad I, Ahmad F, Pichtel J, editors. Microbes and microbial technology. UK: Springer Nature; 2011. p. 29–57.

    Google Scholar 

  121. Rastogi G, Stetler LD, Peyton BM, Sani RK. Molecular analysis of prokaryotic diversity in the deep subsurface of the former Homestake gold mine, South Dakota, USA. J Microbiol. 2009;47:371–84.

    Google Scholar 

  122. Rathod J, Dhebar S, Archana G. Efficient approach to enhance whole cell azo dye decolorization by heterologous overexpression of Enterococcus sp. L2 azoreductase (azoA) and Mycobacterium vaccae formate dehydrogenase (fdh) in different bacterial systems. Int Biodeterior Biodegrad. 2017;124:91–100.

    CAS  Google Scholar 

  123. Ravikumar S, Ganesh I, Yoo IK, Hong SH. Construction of a bacterial biosensor for zinc and copper and its application to the development of multifunctional heavy metal adsorption bacteria. Process Biochem. 2012;47:758–65.

    CAS  Google Scholar 

  124. Reina AC, Miralles-Cuevas S, Casas LJL, Pérez JAS. Pyrimethanil degradation by photo-fenton process: influence of iron and irradiance level on treatment cost. Sci Total Environ. 2017;605-606:230–7.

    Google Scholar 

  125. Renitta J, Pamela J, Anoop KY, Nitin D. Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: a comprehensive review. Chemosphere. 2018;207:255–66.

    Google Scholar 

  126. Rosselli R, Ottavia R, Nicola V, Alessandro V, Stefano C, Fabio DP, et al. Direct 16S rRNA-seq from bacterial communities: a PCR-independent approach to simultaneously assess microbial diversity and functional activity potential of each taxon. Sci Rep. 2016;6: Article number: 32165. https://doi.org/10.1038/srep32165.

  127. Salunkhe VP, Sawant IS, Banerjee K, Wadkar PN, Sawant SD, Hingmire SA. Kinetics of degradation of carbendazim by B. subtilis strains: possibility of in situ detoxification. Environ Monit Assess. 2014;186:8599–610.

    CAS  Google Scholar 

  128. Sana K, Mohammad A, Abdul M. Mutagenicity and genotoxicity evaluation of textile industry wastewater using bacterial and plant bioassays. Toxicol Rep. 2019;6:193–201.

    Google Scholar 

  129. Sanmuga PE, Senthamil SP. Water hyacinth (Eichhornia crassipes)—an efficient and economic adsorbent for textile effluent treatment—a review. Arab J Chem. 2017;10:S3548–58.

    Google Scholar 

  130. Santillan JY, Dettorre LA, Lewkowicz ES, Iribarren AM. New and highly active microbial phosphotriesterase sources. FEMS Microbiol Lett. 2016;363(24). https://doi.org/10.1093/femsle/fnw276.

    Google Scholar 

  131. Santo M, Ronen W, Alex S. The role of the copper-binding enzyme-laccase-in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int Biodeterior Biodegradation. 2013;84:204–10.

    CAS  Google Scholar 

  132. Sara AS, Marta A, Todd FW, Raj B. A review on microbial lipids as a potential biofuel. Bioresour Technol. 2018;259:451–60.

    Google Scholar 

  133. Saratale RG, Saratale GD, Chang JS, Govindwar SP. Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng. 2011;42:138–57.

    CAS  Google Scholar 

  134. Shan W, Hongyu L, Huijun H, Le L, Xiang L, Guangming Z, et al. Treatment of anaerobically digested swine wastewater by Rhodobacter blasticus and Rhodobacter capsulatus. Bioresour Technol. 2016;222:33–8.

    Google Scholar 

  135. Shraddha RS, Sehgal S, Kamthania M, Kumar A. Laccase: microbial sources, production, purification and potential biotechnological applications. Enzym Res. 2011; Article ID: 217861:1–11. https://doi.org/10.4061/2011/217861.

    Google Scholar 

  136. Shuhao H, Jing C, Feifei Z, Bin Z, Xiu C, Sajid B, et al. Filamentous microalgae Tribonema sp. cultivation in the anaerobic/oxic effluents of petrochemical wastewater for evaluating the efficiency of recycling and treatment. Biochem Eng J. 2019;145:27–32.

    Google Scholar 

  137. Simon C, Rolf D. Metagenomic analyses: past and future trends. Appl Environ Microbiol 2011;77(4):1153–61.

    Google Scholar 

  138. Singh B. Review on microbial carboxylesterase: general properties and role in organophosphate pesticides degradation. Biochem Mol Biol. 2014;2:1–6.

    Google Scholar 

  139. Singh P, Anwesha B. A review on biodegradation and photocatalytic degradation of organic pollutants: a bibliometric and comparative analysis. J Clean Prod. 2018;16:1669–80.

    Google Scholar 

  140. Singh BK, Campbell CD, Sorenson SJ, Zhou J. Soil genomics. Nat Rev Microbiol. 2009;756. https://doi.org/10.1038/nrmicro2119-c1.

    CAS  Google Scholar 

  141. Song L, Mao K, Zhou X, Hu J. A novel biosensor based on Au@ Ag core–shell nanoparticles for SERS detection of arsenic (III). Talanta. 2016;146:285–90.

    CAS  Google Scholar 

  142. Song T, Li S, Lu Y, Yan D, Sun P, Bao M, et al. Biodegradation of hydrolyzed polyacrylamide by a Bacillus megaterium strain SZK-5: functional enzymes and antioxidant defense mechanism. Chemosphere. 2019;231:184–93.

    CAS  Google Scholar 

  143. Srivastava S, Thakur IS. Evaluation of bioremediation and detoxification potentiality of Aspergillus niger for removal of hexavalent chromium in soil microcosm. J Soil Biol Biochem. 2006;38:1904–11.

    CAS  Google Scholar 

  144. Stauffert M, Cravo-Laureau C, Duran R. Dynamic of sulphate-reducing microorganisms in petroleum-contaminated marine sediments inhabited by the polychaete Hediste diversicolor. Environ Sci Pollut Res. 2015;22:15273–84.

    CAS  Google Scholar 

  145. Tang X, He LY, Tao XQ, Dang Z, Guo CL, Lu GN, et al. Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil. J Hazard Mater. 2010;181:1158–62.

    CAS  Google Scholar 

  146. Taniguchi J, Hemmi H, Tanahashi K, Amano N, Nakayama T, Nishino T. Zinc biosorption by a zinc-resistant bacterium, Brevibacterium sp. strain HZM-1. Appl Microbiol Biotechnol. 2000;54:581–8.

    CAS  Google Scholar 

  147. Tayssir K, Tarek R, Satinder KB, Maximiliano C, Saurabhjyoti S, Mausam V. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review. J Environ Sci. 2017;51:52–74.

    Google Scholar 

  148. Tayssir K, Sara M, Tarek R, Satinder KB. Ex-situ biodegradation of petroleum hydrocarbons using Alcanivorax borkumensis enzymes. Biochem Eng J. 2018;132:279–87.

    Google Scholar 

  149. Thilo E, Rolf T. Improved detection of soil microorganisms using fluorescence in situ hybridization (FISH) and catalyzed reporter deposition (CARD-FISH). Soil Biol Biochem. 2008;40:1883–91.

    Google Scholar 

  150. Tipayno S, Kim CG, Sa T. T-RFLP analysis of structural changes in soil bacterial communities in response to metal and metalloid contamination and initial phytoremediation. Appl Soil Ecol. 2012;61:137–46.

    Google Scholar 

  151. Ufarte L, Laville E, Duquesne S, Potocki-Veronese G. Metagenomics for the discovery of pollutant degrading enzymes. Biotechnol Adv. 2015;33:1845–54.

    CAS  Google Scholar 

  152. Van KN, Trung HN, Myung-Gyu H, Ho YK. Kinetics of microbial selenite reduction by novel bacteria isolated from activated sludge. J Environ Manag. 2019;236:746–54.

    Google Scholar 

  153. Varjani S. Microbial degradation of petroleum hydrocarbons. Bioresour Technol. 2017a;223:277–86.

    CAS  Google Scholar 

  154. Varjani SJ. Remediation processes for petroleum oil polluted soil. Indian J Biotechnol. 2017b;16:157–63.

    CAS  Google Scholar 

  155. Varjani S, Gnansounou E. Microbial dynamics in petroleum oilfields and their relationship with physiological properties of petroleum oil reservoirs. Bioresour Technol. 2017;45:1258–65.

    Google Scholar 

  156. Varjani SJ, Upasani VN. Core flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514. Bioresour Technol. 2016a;220:175–82.

    CAS  Google Scholar 

  157. Varjani SJ, Upasani VN. Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: production, characterization and surface-active properties of biosurfactant. Bioresour Technol. 2016b;221:510–6.

    CAS  Google Scholar 

  158. Varjani SJ, Upasani VN. Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514. Bioresour Technol. 2016c;222:195–201.

    CAS  Google Scholar 

  159. Varjani SJ, Upasani VN. A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int Biodeterior Biodegrad. 2017a;120:71–83.

    CAS  Google Scholar 

  160. Varjani SJ, Upasani VN. Crude oil degradation by Pseudomonas aeruginosa NCIM 5514: influence of process parameters. Indian J Exp Biol. 2017b;55:493–7.

    CAS  Google Scholar 

  161. Varjani S, Upasani VN. Influence of abiotic factors, natural attenuation, bioaugmentation and nutrient supplementation on bioremediation of petroleum crude contaminated agricultural soil. J Environ Manag. 2019;245:358–66.

    CAS  Google Scholar 

  162. Varjani S, Dolly PR, Ajay KJ, Surendra B, Vivek NU. Synergistic ex-situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India. Int Biodeterior Biodegrad. 2015;103:116–24.

    CAS  Google Scholar 

  163. Varjani S, Gnansounou E, Pandey A. Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms. Chemosphere. 2017;188:280–91.

    CAS  Google Scholar 

  164. Varjani SJ, Srivastava VK, Raveendran S, Thakur IS, E Gnansounou E. Culture based approaches, dependent and independent, for microbial community fractions in petroleum oil reservoirs. Indian J Exp Biol. 2018;56:444–50.

    CAS  Google Scholar 

  165. Varjani S, Gopalakrishnan K, Eldon RR. Developments in biochar application for pesticide remediation: current knowledge and future research directions. J Environ Manag. 2019;232:505–13.

    CAS  Google Scholar 

  166. Venkatesan AK, Halden RU. Wastewater treatment plants as chemical observatories to forecast ecological and human health risks of manmade chemicals. Sci Rep. 2014;4: Article no. 3731. https://doi.org/10.1038/srep03731.

  167. Vasudevan V, Gayathri KV, Krishnan MEG. Bioremediation of a pentacyclic PAH, Dibenz(a,h)Anthracene—a long road to trip with bacteria, fungi, autotrophic eukaryotes and surprises. Chemosphere. 2018;202:387–99.

    CAS  Google Scholar 

  168. Vidyashankar S, Ravishankar GA. Algae-based bioremediation: bioproducts and biofuels for biobusiness. In: Prasad MNV, editor. Bioremediation and bioeconomy: Elsevier; 2016. p. 457–93. https://doi.org/10.1016/B978-0-12-802830-8.00018-6.

    Google Scholar 

  169. Vourdas N, Moschou DC, Papadopoulos KA, Davazoglou D, Stathopoulos VN. A new microfluidic pressure-controlled field effect transistor (pFET) in digital fluidic switch operation mode. Microelectron Eng. 2017;109:28–32.

    Google Scholar 

  170. Wang H, Qiulai H, Dan C, Li W, Zhuocheng Z, Jun Z, et al. Microbial community in a hydrogenotrophic denitrification reactor based on pyrosequencing. Appl Microbiol Biotechnol. 2015;99:10829–37.

    CAS  Google Scholar 

  171. Wang ZG, Liu S, Xu WH, Hu YL, Hu Y, Zhang Y. The microbiome and functions of black soils are altered by dibutyl phthalate contamination. Appl Soil Ecol. 2016;99:59–69.

    CAS  Google Scholar 

  172. Watts JE, Wu Q, Schreier SB, May HD, Sowers KR. Comparative analysis of polychlorinated biphenyl-dechlorinating communities in enrichment cultures using three different molecular screening techniques. Environ Microbiol. 2001;3:710–9.

    CAS  Google Scholar 

  173. Weber B, Budel B, Belnap J. Biological soil crusts: an organizing principle in dry lands, 1st ed. New York Springer International Publishing; 2016. https://doi.org/10.1007/978-3-319-30214-0

    Google Scholar 

  174. Wongwongsee W, Chareanpat P, Pinyakong O. Abilities and genes for PAH biodegradation of bacteria isolated from mangrove sediments from the central of Thailand. Mar Pollut Bull. 2013;74:95–104.

    CAS  Google Scholar 

  175. Wycliffe CW, John MO, Paul MS, Francis JM. Biodegradation and detoxification of malachite green dye using novel enzymes from Bacillus cereus strain KM201428: kinetic and metabolites analysis. Energy Procedia. 2017;119:38–51.

    Google Scholar 

  176. Xia-li G, Zheng-wei Z, Hong-li L. Biodegradation of sulfamethoxazole by Phanerochaete chrysosporium. J Mol Liq. 2014;198:169–72.

    Google Scholar 

  177. Xie Y, Yu F, Wang Q, Gu X, Chen W. Cloning of catechol 2, 3-dioxygenase gene and construction of a stable genetically engineered strain for degrading crude oil. Indian J Microbiol. 2014;54:59–64.

    CAS  Google Scholar 

  178. Xing H, Jian H, Xin Y, Qing H, Kai C, Qin H, et al. Microbial catabolism of chemical herbicides: microbial resources, metabolic pathways and catabolic genes. Pestic Biochem Physiol. 2016;143:272–97.

    Google Scholar 

  179. Xue J, Wu Y, Ke S, Xiao X, Gao Y, Li L, et al. Study on the degradation performance and kinetics of immobilized cells in straw-alginate beads in marine environment. Bioresour Technol. 2019;280:88–94.

    CAS  Google Scholar 

  180. Yadav KK, Singh JK, Gupta N, Kumar V. A review of nanobioremediation technologies for environmental cleanup: a novel biological approach. J Mater Environ Sci. 2017;8:740–57.

    CAS  Google Scholar 

  181. Yadav A, Raj A, Purchase D, Ferreira LFR, Saratale GD, Bharagava RN. Phytotoxicity, cytotoxicity and genotoxicity evaluation of organic and inorganic pollutants rich tannery wastewater from a Common Effluent Treatment Plant (CETP) in Unnao district, India using Vigna radiata and Allium cepa. Chemosphere. 2019;224:324–32.

    CAS  Google Scholar 

  182. Yale RL, Sapp M, Sinclair CJ, Moir JW. Microbial changes linked to the accelerated degradation of the herbicide atrazine in a range of temperate soils. Environ Sci Pollut Res Int. 2017;24:7359–74.

    CAS  Google Scholar 

  183. Yang Y, Yao J, Hu S, Qi Y. Effects of agricultural chemicals on DNA sequence diversity of soil microbial community: a study with RAPD marker. Microb Ecol. 2000;39:72–9.

    CAS  Google Scholar 

  184. Yang J, Liu R, Song W, Yang Y, Cui F, Qiao C. Construction of a genetically engineered microorganism that simultaneously degrades organochlorine and organophosphate pesticides. Appl Biochem Biotechnol. 2012;166:590–8.

    CAS  Google Scholar 

  185. Yin K, Lv M, Wang Q, Wu Y, Liao C, Zhang W, et al. Simultaneous bioremediation and biodetection of mercury ion through surface display of carboxylesterase E2 from Pseudomonas aeruginosa PA1. Water Res. 2016;103:383–90.

    CAS  Google Scholar 

  186. Yong Z, Lei Z, Zhengjun C. Removal of organic pollutants from aqueous solution using agricultural wastes: a review. J Mol Liq. 2015;212:739–62.

    Google Scholar 

  187. Yonglong L, Jingjing Y, Xiaotian L, Chao S, Yueqing Z, Chenchen W, et al. Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability. Environ Pollut. 2018;239:670–80.

    Google Scholar 

  188. Yu CP, Ahuja R, Sayler G, Chu KH. Quantitative molecular assay for fingerprinting microbial communities of wastewater and estrogen-degrading consortia. Appl Environ Microbiol. 2005;71:1433–44.

    CAS  Google Scholar 

  189. Yun J, Ryu S. Screening for novel enzymes from metagenome and SIGEX, as a way to improve it. Microb Cell Factories. 2005;4:8. https://doi.org/10.1186/1475-2859-4-8.

    Article  CAS  Google Scholar 

  190. Zhang X, Huang Y, Harvey PR, Li H, Ren Y. Isolation and characterization of carbendazim-degrading Rhodococcus erythropolis djl-11. PLoS One. 2013;8:1–6.

    CAS  Google Scholar 

  191. Zhao Q, Yue S, Bilal M, Hu H, Wang W, Zhang X. Comparative genomic analysis of 26 Sphingomonas and Sphingobium strains: dissemination of bioremediation capabilities, biodegradation potential and horizontal gene transfer. Sci Total Environ. 2017;609:1238–47.

    CAS  Google Scholar 

  192. Zhou Y, Wei J, Shao N, Wei D. Construction of a genetically engineered microorganism for phenanthrene biodegradation. J Basic Microbiol. 2013;53:188–94.

    CAS  Google Scholar 

Download references

Acknowledgments

Bishwambhar Mishra acknowledges the Centurion University, Odisha for providing infrastructure and smart digital library facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunita Varjani.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Biology and Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, B., Varjani, S., Iragavarapu, G.P. et al. Microbial Fingerprinting of Potential Biodegrading Organisms. Curr Pollution Rep 5, 181–197 (2019). https://doi.org/10.1007/s40726-019-00116-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-019-00116-5

Keywords

Navigation