Skip to main content
Log in

Geomorphometric relief classification with the k-median method in the Silesian Upland, southern Poland

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

The aim of this study is geomorphometric relief classification of a temperate latitude upland area in Central Europe. The Silesian Upland represents diversified structural relief which contains a fan-shaped configuration of long thresholds and wide erosion depressions. A 20 m × 20 m digital elevation model (DEM) provided input data for the analysis. The k-median method was applied to examine morphometric variables of the relief. The aim of these activities was to identify clusters with objects of similar mathematical characteristics. These clusters were the basis of landform classification. Smaller numbers of clusters 4 transparently show hypsometric relationships. Key elements of the morphology of the area were clearly visible. The division into 6 clusters gives the best results—a detailed but clear image of the morphological diversity by distinguishing characteristic landform elements. The results for 8 clusters show significant background noise and are ambiguous, which makes them difficult to identify. Our research has confirmed that the k-median method is a useful tool for landform classifications. We determined optimal parameters of this method (filtering window size, DEM resolution, number of clusters, aspect influence).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alonso-Sarría F, Gomariz-Castillo F, Cánovas-García F (2018). A new approach to the openness index for landform characterization. Comput Geosci, 119: 68–79

    Google Scholar 

  • Arrell K E (2001). A fuzzy k-means classification of elevation derivatives to extract the natural landforms in Snowdonia, Wales. In: Proceedings of 9th National Conference on GIS Research UK (GISRUK 2001)

  • Arrell K E, Fisher P F, Tate N J, Bastin L (2007). A fuzzy c-means classification of elevation derivatives to extract the morphometric classification of landforms in Snowdonia, Wales. Comput Geosci, 33(10): 1366–1381

    Google Scholar 

  • Azanon J M, Delgado J, Gómez A (2004). Morphological terrain classification and analysis using geostatistical techniques. In: Proceedings of ISPRS Congress. Istanbul, 12–23

  • Biernat S, Haisig J, Lewandowski J, Wilanowski S (1980). Geologic Map of Poland 1:200000, sheet Częstochowa. Warszawa: Instytut Geologiczny

    Google Scholar 

  • Broersen T, Peters R, Ledoux H (2017). Automatic identification of watercourses in flat and engineered landscapes by computing the skeleton of a LiDAR point cloud. Comput Geosci, 106: 171–180

    Google Scholar 

  • Bukowska-Jania E (1983). Contemporary fluvial processes in the eastern part of Silesian Upland. Dissertation for the Doctoral Degree, Wrocławski: Uniwersytet Wrocławski (in Polish)

    Google Scholar 

  • Burrough P A, Wilson J P, van Gaans P F M, Hansen A J (2001). Fuzzy k-means classification of topo-climatic data as an aid to forest mapping in the Greater Yellowstone Area, USA. Landsc Ecol, 16(6): 523–546

    Google Scholar 

  • Chmal H (1976). Processes of the erosion forms development on the dumps of the coal mining in the Upper Silesian Basin. Dissertation for the Doctoral Degree, Wrocławski: Uniwersytet Wrocławski (in Polish)

    Google Scholar 

  • Czajka W (2009). Database of the terrain elevations in DTED format. Kwartalnik BELLONA-90 lat geografii wojskowej (wydanie specjalne). MON, Warszawa, 26–30 (in Polish)

  • Dekavalla M, Argialas D (2017). Object-based classification of global undersea topography and geomorphological features from the SRTM30_PLUS data. Geomorphology, 288: 66–82

    Google Scholar 

  • Deng Y (2007). New trends in digital terrain analysis: landform definition, representation and classification. Prog Phys Geogr, 31(4): 405–419

    Google Scholar 

  • Dikau R (1989). The application of a digital relief model to landform analysis. In: Raper J F ed. Three dimensional applications in Geographical Information Systems. London: Taylor and Francis, 51–77

    Google Scholar 

  • Dikau R, Brabb E E, Mark R M (1991). Landform classification of New Mexico by computer. Open File Report 91-634. U.S Geological Survey. 15

  • DMA (Defense Mapping Agency) (2000) Performance specification digital terrain elevation data (DTED)

  • Drăguţ L, Blaschke T (2006). Automated classification of landform elements using object-based image analysis. Geomorphology, 81(3–4): 330–344

    Google Scholar 

  • Drăguţ L, Csillik O, Minár J, Evans I S (2013). Land-surface segmentation to delineate elementary forms from Digital Elevation Models. Geomorphometry, 16–20

  • Drăguţ L, Eisank C (2011). Object representations at multiple scales from digital elevation models. Geomorphology (Amst), 129(3–4): 183–189

    Google Scholar 

  • Drăguţ L, Eisank C (2012). Automated object-based classification of topography from SRTM data. Geomorphology (Amst), 141–142(4): 21–33

    Google Scholar 

  • DTED-2 (2001). Digital Elevation Model of Poland level 2. Warszawa

  • Dulias R (1994). Documentation of the group of the aeolian landforms between Woszczyce and Kleszczówka. Sosnowiec (in Polish)

  • Dulias R (1995). Dunes of the southern part of the Silesian Upland. In: Proceedings of III Zjazd Geomorfologów Polskich: procesy geomorfologiczn, Sosnowiec. 1, 19–20 (in Polish)

  • ESRI (Environmental Systems Research Institute) 2017. ArcGIS Desktop: Release 10.5. Redlands, CA

  • Evans I S (1972). General geomorphometry, derivatives of altitude and descriptive statistics. In: Chorley R ed. Spatial Analysis in Geomorphology. London: Methuen and Co., 17–91.

    Google Scholar 

  • Evans I S, Cox N J (1999). Relation between Land Surface Properties: Altitude, Slope and Curvature. In: Hergarten S, Neugebauer H J eds. Process Modelling and Landform Evolution. Heidelberg: Springer, 13–45

    Google Scholar 

  • Galon R, ed. (1972). Geomorphology of Poland vol. 2. Warszawa: PWN (in Polish)

    Google Scholar 

  • Gilewska S (1963). Relief of the Mid-Triassic escarpment in the vicinity of Będzin. IG PAN, Prace Geograficzne nr 44, Warszawa: Wydawnictwa Geologiczne, 119 (in Polish)

    Google Scholar 

  • Gillewska S (1972). Silesian-Małopolskie Uplands. In: Klimaszewski M ed. Geomorphology of Poland vol. 1. Warszawa: PWN, 232–339 (in Polish)

    Google Scholar 

  • Gilewska S (1986). Geomorphological subdivision of Poland. Przegląd Geograficzny, 58(1–2): 15–40 (in Polish)

    Google Scholar 

  • Gilewska S (1999a). Relief. In: Starkel L ed. Geografia Polski. Geography of Poland. Natural environment. Warszawa: PWN, 243–287 (in Polish)

    Google Scholar 

  • Gilewska S (1999b). Development of the environment of Poland in Tertiary. In: Starkel L ed. Geography of Poland. Natural environment. Warszawa: PWN, 38–66 (in Polish)

    Google Scholar 

  • Gilewska S, Klimek M (1997). Relief origin and age. 1: 1500000. IGiPZ PAN, Atlas Rzeczypospolitej, Warszawa: PPWK (in Polish)

    Google Scholar 

  • Guzzetti F, Reichenbach P (1994). Toward the definition of topographic divisions for Italy. Geomorphology 11: 57–75

    Google Scholar 

  • Haisig J, Wilanowski S (1979). Geologic Map of Poland 1:200000 sheet Kluczbork. Warszawa: Instytut Geologiczny

    Google Scholar 

  • Hammond E H (1954). Small-scale continental landform maps. Ann Assoc Am Geogr, 44(1): 33–42

    Google Scholar 

  • Hammond E H (1964). Analysis of properties in land form geography: an application to broad-scale land form mapping. Ann Assoc Am Geogr, 54(1): 11–19

    Google Scholar 

  • Hornig A (1955a). Formy powierzchni ziemi stworzone przez człowieka na obszarze Wyżyny Śląskiej (Landforms made by human in the Silesian Upland area). In: Wrzosek A ed Górny Śląsk. Wydawnictwo Literackie, Kraków: 127–149 (in Polish)

    Google Scholar 

  • Hornig A (1955b). On some monuments of inanimate nature of the Silesian Upland. Chrońmy przyrodę ojczystą 6: 8–18 (in Polish)

    Google Scholar 

  • von Humboldt A (1849). Ansichten der Natur: mit wissenschaftlichen Erläuterungen. Stuttgart: J.G. Cotta’scher Verlag. 407

    Google Scholar 

  • Hutchinson M F (1989). A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. J Hydrol (Amst), 106(3–4): 211–232

    Google Scholar 

  • Hutchinson M F (2011). ANUDEM Version 5.3. User Guide. Fenner School of Environment and Society, Australian National University

  • Iwahashi J, Pike R J (2007). Automated classification of topography from DEMs by an unsupervised nested-mean algorithm and a three-part geometric signature. Geomorphology, 86(3–4): 409–440

    Google Scholar 

  • Jania J, Dulias R, Szypuła B, Tyc A (2014). Digital Geomorphological Map of Poland 1:100000, sheet Katowice. Poznań: GUGiK, Gepol

    Google Scholar 

  • Jania J, Szczypek T (1980). An attempt to distinguish of the eolian sediments and landforms in the selected areas of the Silesian Highland by means of the photointerpretation. Fotointerpretacja w geografii 4: 25–40 (in Polish)

    Google Scholar 

  • Jasiewicz J, Stepinski T F (2013). Geomorphons—a pattern recognition approach to classification and mapping of landforms. Geomorphology, 182: 147–156

    Google Scholar 

  • Jenness J, Brost B, Beier P (2013). Land Facet Corridor Designer: Extension for ArcGIS. Flagstaff: Jenness Enterprises

    Google Scholar 

  • Jorge M G, Brennand T A (2017). Semi-automated extraction of longitudinal subglacial bedforms from digital terrain models—two new methods. Geomorphology, 288: 148–163

    Google Scholar 

  • Karaś C, Starkel L (1958). Extent of the Middle Polish glaciation in the southern part of the Silesian Upland) Przegląd Geograficzny, 30: 263–270 (in Polish)

    Google Scholar 

  • Karaś-Brzozowska C (1960). Geomorphological characteristics of the Upper Silesian Industrial District. Warszawa: Biuletyn PAN (in Polish)

    Google Scholar 

  • Karaś-Brzozowska C (1963). Extent of the Middle Polish glaciation in the Racibórz Basin. Przegląd Geograficzny, 35: 431–442 (in Polish)

    Google Scholar 

  • Kaziuk H, Lewandowski J (1980). Geologic Map of Poland 1:200000 sheet Kraków. Warszawa: Instytut Geologiczny

    Google Scholar 

  • Khan F (2012). An initial seed selection algorithm for k-means clustering of georeferenced data to improve replicability of cluster assignments for mapping application. Appl Soft Comput, 12(11): 3698–3700

    Google Scholar 

  • Klimaszewski M (1947). Geomorphic map of the Southern Poland 1:1800000. Czas Geogr, 17: 133–182 (in Polish)

    Google Scholar 

  • Klimaszewski M (1991). A geomorphological comparison of structural thresholds. Wrocław-Warszawa-Kraków: Dokumentacja Geograficzna (in Polish)

    Google Scholar 

  • Klimaszewski M (1959) Geomorphological Map of the Uppersilesian Industrial Region, 1:50000. Warszawa: Komitet itd. GOP PAN (in Polish)

    Google Scholar 

  • Klimaszewski M, ed. (1972) Geomorphology of Poland vol. 1. Warszawa: PWN (in Polish)

    Google Scholar 

  • Klimek K (1966) Deglaciation of northern part of Silesia-Cracow Upland during the Middle-Polish glaciation. Warszawa: Prace Geograficzne IG PAN 53, 136 (in Polish)

    Google Scholar 

  • Kondracki J (1951). Geomorphological map of Poland, 1:2000000. Przegląd Geograficzny 23 (in Polish)

  • Kondracki J (2001). Regional geography of Poland. Warszawa: PWN, 441 (in Polish)

    Google Scholar 

  • Kotlicka G N, Kotlicki S (1979). Geologic Map of Poland 1:200000 sheet Gliwice. Warszawa: Instytut Geologiczny

    Google Scholar 

  • Larose D T (2005). Discovering Knowledge in Data: an Introduction to Data Mining. New York: John Wiley & Sons, 240

    Google Scholar 

  • Lewandowski J (1982). Extent of ice sheet of Middle-Polish glaciation in the Silesian Upland. Biuletyn Instytutu Geologicznego, 337(26): 115–136 (in Polish)

    Google Scholar 

  • Lewandowski J (1987). Odra glaciation in the Silesian Upland. Biuletyn Geologiczny, 31: 247–301 (in Polish)

    Google Scholar 

  • Liu F, Gao H, Pan B, Li Z, Su H (2019). Quantitative analysis of planation surfaces of the upper Yangtze River in the Sichuan-Yunnan Region, Southwest China. Front Earth Sci, 13(1): 55–74

    Google Scholar 

  • Luo L, Mu L, Wang X, Li C, Ji W, Zhao J, Cai H (2013). Global detection of large lunar craters based on the CE-1 digital elevation model. Front Earth Sci, 7(4): 456–464

    Google Scholar 

  • MacMillan R A, Shary P A (2009). Landforms and landform elements in geomorphometry. In: Hengl T, Reuter H I, eds. Geomorphometry. Concepts, Software, Applications. Amsterdam: Elsevier, 227–254

    Google Scholar 

  • Mentlik P, Novotna M (2010). Elementary forms and ‘scientific reliability’ as an innovative approach to geomorphological mapping. Journal of Maps 6(1): 564–583

    Google Scholar 

  • Minár J, Evans I S (2008). Elementary forms for land surface segmentation: the theoretical basis of terrain analysis and geomorphological mapping. Geomorphology, 95(3–4): 236–259

    Google Scholar 

  • Mitášová H, Hofierka J, Zlocha M, Iverson R L (1996). Modelling topographic potential for erosion and deposition using GIS. Int J Geogr Inf Syst, 10(5): 629–641

    Google Scholar 

  • Moore I D, Grayson R B, Ladson A R (1991). Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol Processes, 5(1): 3–30

    Google Scholar 

  • MPHP (Digital Map of Hydrographical Division of Poland) (2010). IMiGW, Warszawa

  • Niemann K O, Howes D E (1991). Applicability of digital terrain models for slope stability assessment. ITC J, 3: 127–137

    Google Scholar 

  • Ortuño M, Guinau M, Calvet J, Furdada G, Bordonau J, Ruiz A, Camafort M (2017). Potential of airborne LiDAR data analysis to detect subtle landforms of slope failure: Portainé, Central Pyrenees. Geomorphology, 295: 364–382

    Google Scholar 

  • Pike R J (1988). The geometric signature: quantifying landslide-terrain types from digital elevation models. Math Geol, 20(5): 491–511

    Google Scholar 

  • Piloyan A, Konečný M (2017). Semi-automated classification of landform elements in Armenia based on SRTM DEM using k-means unsupervised classification. Quaest Geogr, 36(1): 93–103

    Google Scholar 

  • Speight J G (1990). Landform. In: McDonald R C, Isbell R F, Speight I G, Walker J, Hop M S eds. Australian Soil and Land Survey Field Handbook. Melbourne: Inkata Press, 9–57

    Google Scholar 

  • Starkel L (1980). Geomorphological Outline Map of Poland, 1:500000. Warszawa: IGiZP PAN

    Google Scholar 

  • Szaflarski J (1955). Overview of the relief development of the Silesian Upland. In: Wrzosek A ed. Górny Śląsk. Kraków: Wydawnictwo Literackie, 65–121 (in Polish)

    Google Scholar 

  • Szczypek T (1977). Eolic activities and deposits in the southern part of the Silesian Upland. Katowice: Prace Naukowe (in Polish)

    Google Scholar 

  • Szczypek T (1986a). Aeolian cover sands in the northern part of the Silesian Upland. Geographia. Studis and Dissertationes, 9: 45–56 (in Polish)

    Google Scholar 

  • Szczypek T (1986b). Dune forming processes in the middle part of the Cracow-Wieluń Upland against a background of the neighbouring area. Katowice: Prace Naukowe UŚ 823. 183 (in Polish)

    Google Scholar 

  • Szczypek T (1988). Aeolian activity in the eastern part of the Silesian Upland on the example of the Bukowno vicinity. Geographia. Studia et Dissertationes, 11: 7–22 (in Polish)

    Google Scholar 

  • Szczypek T, Wach J (1991). Development of the modern dune in the strong human impact conditions. Katowice: Prace Naukowe (in Polish)

    Google Scholar 

  • Szczypek T, Wach J (1992). Human impact and course of natural morphogenetic processes on the example of Silesian Upland. Kształtowanie środowiska geograficznego i ochrony przyrody na obszarach uprzemysłowionych i zurbanizowanych, 4: 5–12 (in Polish)

    Google Scholar 

  • Szczypek T, Wach J (1993). Anthropogenic scarp dune at Bukowno on the Silesian Upland in the period 1989–1993. Katowice: Uniwersytet Śląski, 50 (in Polish)

    Google Scholar 

  • Szypuła B (2009). Research on the rock strength of the Silesian Upland using Schmidt hammer. Geographia. Studia et Dissertationes, 31: 65–80 (in Polish)

    Google Scholar 

  • Szypuła B (2017). Quantitative studies of the morphology of the south Poland using Relief Index (RI). Open Geosci, 9(1): 509–524

    Google Scholar 

  • Tang G, Li F (2008). Landform classification of the loess plateau based on slope spectrum from grid DEMs. In: Advances in Digital Terrain Analysis (Lecture Notes in Geoinformation and Cartography), 107–124

  • Tobler W (1970). A computer movie simulating urban growth in the Detroit region. Econ Geogr, 46(2): 234–240

    Google Scholar 

  • Urbański J (2012). GIS in the environmental research. Gdańsk: Uniwersytetu Gdańskiego, 252 (in Polish)

    Google Scholar 

  • Van Lopik J R, Kolb C R (1959). A technique for preparing desert terrain analogs. U.S. Army Engineer Waterways Experiment Station. Vicksburg, MS, Tech. Rept. 3–506

  • Weiss A (2001). Topographic Position and Landform Analysis. Poster presentation, In: ESRI User Conference. San Diego

  • Wieczorek M (2008). The classification of landforms based on Digital Elevation Model. Dissertation for the Doctoral Degree. Wrocław: Uniwersytet Wrocławski, 104 (in Polish)

    Google Scholar 

  • Wieczorek M (2011). An influence of spatial range of input data set on terrain relief form classification homogeneity for glacial area. In: Ruas A ed. Advances in Cartography and GIScience, Vol. 2 Selection from ICC 2011. Paris: Springer, 357–369

    Google Scholar 

  • Wieczorek M, Migoń P (2014). Automatic relief classification versus expert and field based landform classification for the medium-altitude mountain range, the Sudetes, SW Poland. Geomorphology, 206: 133–146

    Google Scholar 

  • Wilson J P, Gallant J (2000). Terrain Analysis. Principles and Applications. London: John Wiley & Sons Inc., 479

    Google Scholar 

  • Wood W F, Snell J B (1960). A quantitative system for classifying landforms. Technical Report EP-124. U.S. Army Quartermaster Research and Engineering Center, 20

  • Yang X, Li M, Na J, Liu K (2017). Gully boundary extraction based on multidirectional hill-shading from high-resolution DEMs. Trans GIS, 21(6): 1204–1216

    Google Scholar 

  • Żmuda S (1973). Anthropogenic changes in the natural environment of the Upper Silesian conurbation. Warszawa-Kraków: PWN, 207 (in Polish)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartłomiej Szypuła.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szypuła, B., Wieczorek, M. Geomorphometric relief classification with the k-median method in the Silesian Upland, southern Poland. Front. Earth Sci. 14, 152–170 (2020). https://doi.org/10.1007/s11707-019-0765-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-019-0765-9

Keywords

Navigation