Skip to main content

Advertisement

Log in

A geometric morphometric approach for disparity of the sulcus acusticus of sagitta in species of Gerreidae (Teleostei: Perciformes)

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

This paper explores shape disparity in the sulcus acusticus of saccular otolith using geometric morphometric methods in selected Gerreidae species. First, multivariate linear regressions between size (CS-log-transformed) and shape were implemented to uncover allometry in the variation of the sulcus acusticus at three levels: intraspecific, intrageneric, and interspecific. Second, we assessed species disparity to investigate if differences in disparity are associated with three biologically contrasting ecological or historical processes within the family. Specifically, we asked: (1) How has disparity changed as a result of an ecological shift from marine to freshwater habitat? (2) How has disparity changed in genera with increasing taxonomic richness? and (3) How did a vicariant event across the Panama isthmus changed disparity in a pair of sister species? Our results indicate that the disparity of the sulcus acusticus shape of the single freshwater species (Eugerres mexicanus) is in the middle of the range of values of the 17 marine species compared. This suggests that the change to a freshwater environment did not influence the variability of the sulcus acusticus. In the taxonomic comparisons, as expected, disparity is lowest in the monotypic Deckertichthys, while it increases with species number in Diapterus. In the vicariant pair, the Pacific basin species (Diapterus brevirostris) has a disparity value almost twice the value than in the Atlantic taxon (D. rhombeus). It remains to be investigated if the same disparity patterns documented here are associated to marine-freshwater ecological shifts and vicariant events in other fish families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request at the following URL: http://www.filogenetica.org/data_files/index.php?

References

  • Aguilar-Medrano, R. (2018). Ecomorphological trajectories of reef fish sister species (Pomacentridae) from both sides of the Isthmus of Panama. Zoomorphology, 137, 315–327. https://doi.org/10.1007/s00435-017-0391-6.

    Article  Google Scholar 

  • Aguirre, W. E. (2003) Allometric growth of the sulcus in Cynoscion spp. (Sciaenidae). Journal of Fish Biology, https://doi.org/10.1046/j.1095-8649.2003.00238.x.

  • Altin, A., & Ayyildiz, H. (2018). Relationships between total length and otolith measurements for 36 fish species from Gökçeada island, Turkey. Journal of Applied Ichthyology. https://doi.org/10.1111/jai.13509.

  • Baird, S. F. (1855). Report on the fishes observed on the coast of New Jersey and long island during the summer of 1854. Smithsonian Institution Annual Report, 9(1854), 317–352.

    Google Scholar 

  • Bartoli, G., Sarnthein, M., Weinelt, M., Erlenkeuser, H., Garbe-Schönberg, D., & Lea, D. W. (2005). Final closure of Panama and the onset of Northern Hemisphere glaciation. Earth Planetary Science Letters. https://doi.org/10.1016/j.epsl.2005.06.020.

  • Bleeker, P. (1863). Mémoire sur les poissons de la côte de Guinée. Natuurkundige Verhandelingen van de Hollandsche Maatschappij der Wetenschappen te Haarlem. Haarlem: Loosjes.

  • Bussing, W. A. (1995). Gerreidae. In W. Fischer, F. Krupp, W. Schneider, C. Sommer, K. E. Carpenter, & V. H. Niem (Eds.), Guía para la identificación de especies para los fines de la pesca, Pacífico centro-oriental, Vertebrados-Parte 1 (Vol. 2, pp. 1114–1128). Rome: FAO.

    Google Scholar 

  • Castro-Aguirre, J. L., Espinosa Pérez, H., & Schmiter-Soto, J. J. (1999). Ictiofauna Estuarino-Lagunar y Vicaria de México. Limusa: México city.

    Google Scholar 

  • Chollet-Villalpando, J. G., García-Rodríguez, F. J., De Luna, E., & De La Cruz-Agüero, J. (2019). Geometric morphometrics for the analysis of character variation in size and shape of the sulcus acusticus of sagittae otolith in species of Gerreidae (Teleostei: Perciformes). Marine Biodiversity, 49, 2323–2332. https://doi.org/10.1007/s12526-019-00970-y.

    Article  Google Scholar 

  • Cuvier, G. (1829). Le Règne Animal, distribué d'après son organisation, pour servir de base à l'histoire naturelle des animaux et d'introduction à l'anatomie comparée. Paris: D’hippolyte tilliard.

    Google Scholar 

  • Cuvier, G., & Valenciennes, A. (1830). Histoire naturelle des Poissons. Paris: Strasbourg.

    Google Scholar 

  • De La Cruz-Agüero, J., Chollet-Villalpando, J. G., & Valle-López, F. L. (2016). Relationships between sagittal otolith length and fish size for 14 Mojarra species (Gerreidae: Perciformes) in Mexico. Turkish Journal of Fisheries and Aquatic Sciences. https://doi.org/10.4194/1303-2712-v16_3_16.

  • De La Cruz-Agüero, J., & Galvan-Magaña, F. (1993). Morphological discrimination of Eucinostomus spp. from the Pacific coast of Mexico. Bulletin of Marine Science, 52(2), 819–824.

    Google Scholar 

  • De La Cruz-Agüero, J., García-Rodríguez, F. J., De La Cruz-Agüero, G., & Díaz-Murillo, B. P. (2012). Identification of Gerreid species (Actinopterygii: Perciformes: Gerreidae) from the Pacific coast of México based on sagittal otolith morphology analysis. Acta Ichthyologica et Piscatoria. https://doi.org/10.3750/AIP2012.42.4.03.

  • Deckert, G. D., & Greenfield, D. W. (1987). A review of the western Atlantic species of the genera Diapterus and Eugerres (Pisces: Gerreidae). Copeia, 1, 182–194.

    Article  Google Scholar 

  • Eble, G. J. (2000). Contrasting evolutionary flexibility in sister groups: disparity and diversity in Mesozoic atelostomate echinoids. Paleobiology. https://doi.org/10.1666/0094-8373(2000)026<0056:CEFISG>2.0.CO;2.

  • Farré, M., Tuset, V. M., Maynou, F., Recasens, L., & Lombarte, A. (2013). Geometric morphology as an alternative for measuring the diversity of fish assemblages. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2012.12.005.

  • Foote, M. (1990). Nearest-neighbor analysis of trilobite morphospace. Systematic Zoology. https://doi.org/10.2307/2992357.

  • Foote, M. (1991). Analysis of morphological data. In N. L. Gilinsky & P. W. Signor (Eds.), Analytical paleobiology. Short courses in Paleontology (pp. 59–86). Paleontological Society: Tennessee.

    Google Scholar 

  • Foote, M. (1993). Contributions of individual taxa to overall morphological disparity. Paleobiology. https://doi.org/10.1017/S0094837300014056.

  • Foote, M. (1994). Morphological disparity in Ordovician-Devonian crinoids and the early saturation of morphological space. Paleobiology. https://doi.org/10.1017/S009483730001280X.

  • Fricke, R., Eschmeyer, W. N., & Van der Laan (2019). Catalog of fishes: genera, species, references. Eschmeyer’s Catalog of Fishes. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. .

  • García-Rodríguez, F. J., Chollet-Villalpando, J. G., Martínez-Guevara, A., & De La Cruz-Agüero, J. (2019). Supporting the existence of two isolated evolutionary lineages of Gerres (Perciformes: Gerreidae) in America. Zoologica Scripta. https://doi.org/10.1111/zsc.12352.

  • Gerber, S., Eble, G. J., & Neige, P. (2008). Allometric space and allometric disparity: a developmental perspective in the macroevolutionary analysis of morphological disparity. Evolution. https://doi.org/10.1111/j.1558-5646.2008.00370.x.

  • Gill, T. N. (1862). Catalogue of the fishes of lower California, in the Smithsonian Institution, collected by Mr. J. Xantus. Part II. Proceedings of the Academy of Natural Sciences of Philadelphia, 14, 242–246.

    Google Scholar 

  • Gill, T. N. (1863). Descriptive enumeration of a collection of fishes from the western coast of Central America, presented to the Smithsonian Institution by Captain John M. Dow. Proceedings of the Academy of Natural Sciences of Philadelphia, 15, 162–174.

    Google Scholar 

  • Bilge, G., & Gülşahin, A. (2014). Relationship between sagittal otolith size and fish size in Argentina sphyraena and Glossanodon leioglossus (Osteichthyes: Argentinidae) in the southern Aegean Sea, Turkey. Zoology in the Middle East. https://doi.org/10.1080/09397140.2014.892327.

  • Günther, A. (1879). On two new species of fishes from the Bermudas. Annals and Magazine of Natural History. https://doi.org/10.1080/00222937908682492.

  • Hill, J. J., Puttick, M. N., Stubbs, T. L., Rayfield, E. J., & Donoghue, P. C. J. (2018). Evolution of jaw disparity in fishes. Paleontology. https://doi.org/10.1111/pala.12371.

  • Humboldt, F. H. A., & Valenciennes, A. (1821). Recherches sur les poissons fluviatiles de l'Amérique Équinoxiale. In F. H. A. von Humboldt & A. Bonpland (Eds.), Voyage de Humboldt et Bonpland, Deuxième partie. Observations de Zoologie et d'Anatomie comparée (pp. 145–216). Paris: Schoell.

    Google Scholar 

  • Jackson, J. B., Budd, A. F., & Coates, A. G. (1996). Evolution and environment in tropical America. Chicago: University of Chicago Press.

    Google Scholar 

  • Jordan, D. S., & Gilbert, C. H. (1882). Descriptions of nineteen new species of fishes from the bay of Panama. Bulletin of the United States Fish Commission, 1(1881), 306–355.

    Google Scholar 

  • Lombarte, A. (1992). Changes in otolith area: sensory area ratio with body size and depth. Environmental Biology of Fishes, 33, 405–410. https://doi.org/10.1007/BF00010955.

    Article  Google Scholar 

  • Lombarte, A., Palmerf, M., Matallanas, J., Gómez-Zurita, J., & Morales-Nin, B. (2010). Ecomorphological trends and phylogenetic inertia of otolith sagittae in Nototheniidae. Environmental Biology of Fishes, 89, 607–618. https://doi.org/10.1007/s10641-010-9673-2.

    Article  Google Scholar 

  • Matheson, R. E., & McEachran, J. D. (1984). Taxonomic studies of the Eucinostomus argenteus complex (Pisces: Gerreidae): preliminary studies of external morphology. Copeia. https://doi.org/10.2307/1445334.

  • McClain, C. R., Johnson, N. A., & Rex, M. A. (2004). Morphological disparity as a biodiversity metric in lower bathyal and abyssal gastropod assemblages. Evolution. https://doi.org/10.1554/03-237.

  • Miller, R. R., Minckley, W. L., & Norris, S. M. (2005). Freshwater fishes of México. Chicago: The university of Chicago press.

    Google Scholar 

  • Miller, R. R., & Smith, M. L. (1986). Origin and geography of fishes of the Central Mexico. In C. H. Hocutt & E. O. Wiley (Eds.), The zoo-geography of north american freshwater fishes (pp. 486–517). New York: Wiley.

    Google Scholar 

  • Montanini, S., Stagioni, M., Valdrè, G., Tommasini, S., & Vallisneri, M. (2015). Intra-specific and inter-specific variability of the sulcus acusticus of sagittal otoliths in two gurnard species (Scorpaeniformes, Triglidae). Fisheries Research. https://doi.org/10.1016/j.fishres.2014.07.003.

  • Monteiro, L. R., Di Beneditto, A. P. M., Guillermo, L. H., & Rivera, L. A. (2005). Allometric changes and shape differentiation of sagitta otoliths in sciaenid fishes. Fisheries Research. https://doi.org/10.1016/j.fishres.2005.03.002.

  • Navarro, C. A., Martin-Silverstone, E., & Stubbs, T. L. (2018). Morphometric assessment of pterosaur jaw disparity. Royal Society Open Science. https://doi.org/10.1098/rsos.172130.

  • Nolf, D. (1993). A survey of perciform otoliths and their interest for phylogenetic analysis, with an iconographic synopsis of the Percoidei. Bulletin of Marine Science, 52(1), 220–239.

    Google Scholar 

  • Platt, C., & Popper, A. N. (1981). Fine structure and function of the ear. In W. N. Tavolga, A. N. Popper, & R. R. Fay (Eds.), Hearing and sound communication in fishes (pp. 3–38). New York: Springer Verlag.

    Chapter  Google Scholar 

  • Popper, A. N., & Coombs, S. (1982). The morphology and evolution of the ear in actinopterygian fishes. American Zoologist. https://doi.org/10.1093/icb/22.2.311.

  • Popper, A. N., & Lu, Z. (2000). Structure-function relationships in fish otolith organs. Fisheries Research. https://doi.org/10.1016/S0165-7836(00)00129-6.

  • Quoy, J. R. C., & Gaimard, J. P. (1824). Description des Poissons. Chapitre IX. In L. De Freycinet (Ed.), Voyage Autour du Monde, Entrepris par Ordre du Roi, exécuté sur les corvettes de L. M. "L'Uranie" et "La Physicienne," pendant les années 1817, 1818, 1819 et 1820 (pp. 192–401). Paris: Royale.

    Google Scholar 

  • Ranzani, C. (1842). De Novis speciebus Piscium. Dissertatio IV. Novi Commentarii Academiae Scientiarum Instituti Bononiensis, 5, 339–365.

    Google Scholar 

  • Regan, C. T. (1907). Biologia Centrali-Americana. Pisces. London: Publisher not Identified.

    Google Scholar 

  • Rohlf, F. J. (2017). TpsDig software, version 2.30. Computer program and documentation. State University of New York, Stony Brook, New York. Department of Ecology and Evolution. Available at: http://life.bio.sunysb.edu/morph/. Accessed 15 March 2019.

  • Rohlf, F. J., & Slice, D. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology. https://doi.org/10.2307/2992207.

  • Sauvage, H. E. (1879). Description de quelques poissons d'espèces nouvelles de la collection du Muséum d'Histoire Naturelle. Bulletin de la Société philomathique de Paris, 3, 204–209.

    Google Scholar 

  • Schultz, L. P. (1949). A further contribution to the ichthyology of Venezuela. Proceedings of the United States National Museum, 99, 1–211.

    Article  Google Scholar 

  • Sheets, H. D. (2014a). CoordGen8 software, version 1. Computer program and documentation. Canisius College: Department of Physics, Buffalo, New York. Available at: http://www.filogenetica.org/cursos/Morfometria/IMP_installers/index.php. Accessed 10 April 2019.

  • Sheets, H. D. (2014b). Semiland8 software, version 1. Computer program and documentation. Canisius College: Department of Physics, Buffalo, New York. Available at: http://www.filogenetica.org/cursos/Morfometria/IMP_installers/index.php. Accessed 10 April 2019.

  • Sheets, H. D. (2014c). Regress8 software, version 1. Computer program and documentation. Canisius College: Department of Physics, Buffalo, New York. Available at: http://www.filogenetica.org/cursos/Morfometria/IMP_installers/index.php. Accessed 10 April 2019.

  • Sheets, H. D. (2014d). PCAGen8 software, version 1. Computer program and documentation. Canisius College: Department of Physics, Buffalo, New York. Available at: http://www.filogenetica.org/cursos/Morfometria/IMP_installers/index.php. Accessed 10 April 2019.

  • Sheets, H. D. (2014e). DisparityBox8 software, version 1. Computer program and documentation. Canisius College: Department of Physics, Buffalo. Available at: http://www.filogenetica.org/cursos/Morfometria/IMP_installers/index.php. Accessed 10 April 2019.

  • Stange, M., Aguirre-Fernández, G., Salzburger, W., & Sánchez-Villagra, M. R. (2018). Study of morphological variation of northern Neotropical Ariidae reveals conservatism despite macrohabitat transitions. BMC Evolutionary Biology, 18, 1–12. https://doi.org/10.1186/s12862-018-1152-y.

    Article  Google Scholar 

  • Steindachner, F. (1863). Ueber eine neue Gerres-Art aus Mexiko. Verhandlungen der K.-K. zoologisch-botanischen Gesellschaft in Wien, 13, 383–384.

    Google Scholar 

  • Torres, G. J., Lombarte, A., & Morales-Nin, B. (2000). Variability of the sulcus acusticus in the sagitta otolith of the genus Merluccius. Fisheries Research. https://doi.org/10.1016/S0165-7836(00)00128-4.

  • Tuset, V. M., Farré, M., Otero-Ferrer, J. L., Vilar, A., Morales-Nin, B., & Lombarte, A. (2016). Testing otolith morphology for measuring marine fish biodiversity. Marine and Freshwater Research. https://doi.org/10.1071/MF15052.

  • Van Valen, L. (2005). The statistics of variation. In B. Hallgrímsson & B. K. Hall (Eds.), Variation: a central concept in biology (pp. 29–47). Burlington: Elsevier.

    Chapter  Google Scholar 

  • Vergara-Solana, F. J., García-Rodríguez, F. J., Tavera, J. J., De Luna, E., & De La Cruz-Agüero, J. (2014). Molecular and morphometric systematics of Diapterus (Perciformes, Gerreidae). Zoologica Scripta. https://doi.org/10.1111/zsc.12054.

  • Villier, L., & Eble, G. (2004). Assessing the robustness of disparity estimates: the impact of morphometric scheme, temporal scale, and taxonomic level in Spatangoid Echinoids. Paleobiology. https://doi.org/10.1666/0094-8373(2004)030<0652:ATRODE>2.0.CO;2.

  • Walbaum, J. J. (1792). Petri Artedi sueci genera piscium. In quibus systema totum ichthyologiae proponitur cum classibus, ordinibus, generum characteribus, specierum differentiis, observationibus plurimis. Redactis speciebus 242 ad genera 52. Ichthyologiae pars III. Germany: Grypeswaldiae.

  • Willis, M. A. (2001). Morphological disparity: a primer. In J. M. Adrain, G. D. Edgecombe, & B. S. Lieberman (Eds.), Fossils, phylogeny, and form: an analytical approach (pp. 55–144). New York: Plenum.

    Chapter  Google Scholar 

  • Wills, M. A., Briggs, D. E. G., & Fortey, R. A. (1994). Disparity as an evolutionary index: a comparison of Cambrian and recent arthropods. Paleobiology. https://doi.org/10.1017/S009483730001263X.

  • Yáñez-Arancibia, A. (1980). Taxonomía, ecología y estructura de las comunidades de peces en lagunas costeras con bocas efímeras del Pacífico de México. UNAM: Centro de Ciencias del Mar y Limnología.

    Google Scholar 

  • Zelditch, M. L., Sheets, H. D., & Fink, W. L. (2003). The ontogenetic dynamics of shape disparity. Paleobiology. https://doi.org/10.1666/0094-8373(2003)029<0139:TODOSD>2.0.CO;2.

  • Zelditch, M. L., Swiderski, D. L., & Sheets, H. D. (2012). Geometric morphometrics for biologists: a primer (2nd ed.). New York: Academic Press.

    Google Scholar 

  • Zischke, M. T., Litherland, L., Tilyard, B. R., Stratford, N. J., Jones, E. L., & Wang, Y. (2016) Otolith morphology of four mackerel species (Scomberomorus spp.) in Australia: Species differentiation and prediction for fisheries monitoring and assessment. Fisheries Research, https://doi.org/10.1016/j.fishres.2015.12.003.

Download references

Acknowledgments

We thank colleagues who encouraged and helped us in this research, especially Cota-Gómez VM (Centro Interdisciplinario de Ciencias Marinas of the Instituto Politecnico Nacional, Mexico), Angulo Sibaja A, and Ramírez Coghi R (Museo de Zoologia of the Universidad de San Jose, Costa Rica).

Funding

This study was funded by a fellowship under the program “Estancias Postdoctorales Vinculadas al Fortalecimiento de la Calidad del Posgrado Nacional” CONACyT (México) awarded to the first author (grant number 349241).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Guillermo Chollet-Villalpando.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All Gerreidae species in this study are edible fish and are not included in the IUCN red list as critically endangered, endangered, vulnerable, or near-threatened species (listed as least concern).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chollet-Villalpando, J.G., De Luna, E. A geometric morphometric approach for disparity of the sulcus acusticus of sagitta in species of Gerreidae (Teleostei: Perciformes). Org Divers Evol 20, 299–311 (2020). https://doi.org/10.1007/s13127-019-00429-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-019-00429-9

Keywords

Navigation