Skip to main content
Log in

Positive solutions for autonomous and non-autonomous nonlinear critical elliptic problems in unbounded domains

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

The paper concerns with positive solutions of problems of the type \(-\Delta u+a(x)\, u=u^{p-1}+\varepsilon u^{2^*-1}\) in \(\Omega \subseteq \mathbb {R}^N\), \(N\ge 3\), \(2^*={2N\over N-2}\), \(2<p<2^*\). Here \(\Omega \) can be an exterior domain, i.e. \(\mathbb {R}^N{\setminus }\Omega \) is bounded, or the whole of \(\mathbb {R}^N\). The potential \(a\in L^{N/2}_{\mathop {\mathrm{loc}}\nolimits }(\mathbb {R}^N)\) is assumed to be strictly positive and such that there exists \(\lim _{|x|\rightarrow \infty }a(x):=a_\infty >0\). First, some existence results of ground state solutions are proved. Then the case \(a(x)\ge a_\infty \) is considered, with \(a(x)\not \equiv a_\infty \) or \(\Omega \ne \mathbb {R}^N\). In such a case, no ground state solution exists and the existence of a bound state solution is proved, for small \({\varepsilon }\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.O., de Freitas, L.R.: Existence of a positive solution for a class of elliptic problems in exterior domains involving critical growth. Milan J. Math. 85(2), 309–330 (2017)

    Article  MathSciNet  Google Scholar 

  2. Aubin, T.: Problemes isoperimetriques et espaces de Sobolev. J. Differ. Geom. 11, 573–598 (1976)

    Article  Google Scholar 

  3. Azzollini, A., Pomponio, A.: On the Schrödinger equation in \(R^N\) under the effect of a general nonlinear term. Indiana Univ. Math. J. 58(3), 1361–1378 (2009)

    Article  MathSciNet  Google Scholar 

  4. Badiale, M., Guida, M., Rolando, S.: Compactness and existence results in weighted Sobolev spaces of radial functions. Part II: existence. NoDEA Nonlinear Differ. Equ. Appl. 23(6), Art. 67, 34 pp

  5. Bahri, A., Li, Y.Y.: On a min–max procedure for the existence of a positive solution for certain scalar field equations in \(R^N\). Rev. Mat. Iberoam. 6, 1–15 (1990)

    Article  Google Scholar 

  6. Bahri, A., Lions, P.L.: On the existence of a positive solution of semilinear elliptic equations in unbounded domains. Ann. Inst. H. Poincaré Anal. Non Linéaire 14, 365–413 (1997)

    Article  MathSciNet  Google Scholar 

  7. Benci, V., Cerami, G.: Positive solutions of some nonlinear elliptic problem in exterior domains. Arch. Rat. Mech. Anal. 99, 283–300 (1987)

    Article  MathSciNet  Google Scholar 

  8. Benci, V., Cerami, G.: Existence of positive solutions of the equation \(-\Delta u+a(x)u=u^{(N+2)/(N-2)}\) in \(R^{N}\). J. Funct. Anal. 88(1), 90–117 (1990)

    Article  MathSciNet  Google Scholar 

  9. Benci, V., Grisanti, C.R., Micheletti, A.M.: Existence and non existence of the ground state solution for the nonlinear Schrödinger equations with \(V(\infty )=0\). Topol. Methods Nonlinear Anal. 26, 203–219 (2005)

    Article  MathSciNet  Google Scholar 

  10. Benci, V., Grisanti, C.R., Micheletti, A.M.: Existence of solutions for the nonlinear Schrödinger equation with \(V(\infty )=0\). Prog. Nonlinear Differ. Equ. Their Appl. 66, 53–65 (2005)

    Article  Google Scholar 

  11. Benci, V., Micheletti, A.M.: Solutions in exterior domain of null mass nonlinear field equations. Adv. Nonlinear Stud. 6, 171–198 (2006)

    Article  MathSciNet  Google Scholar 

  12. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations I Existence of a ground state, II. Existence of infinitely many solutions. Arch. Rational Mech. Anal. 82(4), 313–345, 347–375 (1983)

    Article  MathSciNet  Google Scholar 

  13. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36(4), 437–477 (1983)

    Article  MathSciNet  Google Scholar 

  14. Cerami, G., Fortunato, D., Struwe, M.: Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(5), 341–350 (1984)

    Article  MathSciNet  Google Scholar 

  15. Cerami, G., Molle, R.: Multiple positive solutions for singularly perturbed elliptic problems in exterior domains. Ann. Inst. H. Poincaré Anal. Non Linéaire 20(5), 759–777 (2003)

    Article  MathSciNet  Google Scholar 

  16. Cerami, G., Molle, R.: Positive bound state solutions for some Schrödinger–Poisson systems. Nonlinearity 29(10), 3103–3119 (2016)

    Article  MathSciNet  Google Scholar 

  17. Cerami, G., Molle, R., Passaseo, D.: Positive solutions of semilinear elliptic problems in unbounded domains with unbounded boundary. Ann. Inst. H. Poincaré Anal. Non Linéaire 24(1), 41–60 (2007)

    Article  MathSciNet  Google Scholar 

  18. Cerami, G., Passaseo, D.: Existence and multiplicity results for semilinear elliptic Dirichlet problems in exterior domains. Nonlinear Anal. 24(11), 1533–1547 (1995)

    Article  MathSciNet  Google Scholar 

  19. Cerami, G., Passaseo, D.: The effect of concentrating potentials in some singularly perturbed problems. Calc. Var. PDE 17, 257–281 (2003)

    Article  MathSciNet  Google Scholar 

  20. Caffarelli, L., Gidas, B., Spruck, J.: Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth. Commun. Pure Appl. Math. 42, 271–297 (1989)

    Article  Google Scholar 

  21. Clapp, M., Maia, L.: Existence of a positive solution to a nonlinear scalar field equation with zero mass at infinity. Adv. Nonlinear Stud. 18(4), 745–762 (2018)

    Article  MathSciNet  Google Scholar 

  22. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68(3), 209–243 (1979)

    Article  MathSciNet  Google Scholar 

  23. Kwong, M.K.: Uniqueness of positive solutions of \(\Delta u -u+u^{p}=0\) in \({\mathbb{R}}^{N}\). Arch. Rat. Mech. Anal. 105, 243–266 (1989)

    Article  Google Scholar 

  24. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case. I–II. Rev. Mat. Iberoam. 1(1/2), 145-201/45-121 (1985)

    MathSciNet  MATH  Google Scholar 

  25. Molina, J., Molle, R.: On elliptic problems in domains with unbounded boundary. Proc. Edinb. Math. Soc. (2) 49(3), 709–734 (2006)

    Article  MathSciNet  Google Scholar 

  26. Molle, R., Passaseo, D.: On the behaviour of the solutions for a class of nonlinear elliptic problems in exterior domains. Discrete Contin. Dynam. Syst. 4(3), 445–454 (1998)

    Article  MathSciNet  Google Scholar 

  27. Molle, R., Pistoia, A.: Concentration phenomena in elliptic problems with critical and supercritical growth. Adv. Differ. Equ. 8(5), 547–570 (2003)

    MathSciNet  MATH  Google Scholar 

  28. Rolando, S.: Multiple nonradial solutions for a nonlinear elliptic problem with singular and decaying radial potential. Adv. Nonlinear Anal. 8(1), 885–901 (2019)

    Article  MathSciNet  Google Scholar 

  29. Struwe, M.: A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. 187(4), 511–517 (1984)

    Article  MathSciNet  Google Scholar 

  30. Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149–162 (1977)

    Article  MathSciNet  Google Scholar 

  31. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110(4), 353–372 (1976)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors have been supported by the “Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA)” of the Istituto Nazionale di Alta Matematica (INdAM)—Project: Sistemi differenziali ellittici nonlineari derivanti dallo studio di fenomeni elettromagnetici. The first author acknowledges also the MIUR Excellence Department Project awarded to the Department of Mathematical Sciences, Politecnico of Turin, CUP E11G18000350001. The second author acknowledges also the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Lancelotti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lancelotti, S., Molle, R. Positive solutions for autonomous and non-autonomous nonlinear critical elliptic problems in unbounded domains. Nonlinear Differ. Equ. Appl. 27, 8 (2020). https://doi.org/10.1007/s00030-019-0611-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-019-0611-5

Mathematics Subject Classification

Keywords

Navigation