Skip to main content
Log in

Formation of Fe-Cu-Ni-Sn-VN Nanocrystalline Matrix by Vacuum Hot Pressing for Diamond-Containing Composite. Mechanical and Tribological Properties

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The processes of structure formation, mechanical and tribological properties under vacuum hot pressing of a blend of powders of iron, copper, nickel and tin with a dispersion of 5–50 µm with the addition of a nanopowder of vanadium nitride depending on temperature are described. It was found that an increase in sintering temperature from 800 to 1000°C leads to grinding of ferrite grains to 20–400 nm, the release of primary (d = 10–100 nm) and secondary (d ≤ 10 nm) VN grains and an increase in hardness from 3.75 to 5.37 GPa and H/E parameters from 0.021 to 0.043 and H3/E2 from 1.70 to 9.91 MPa, a decrease in the elastic modulus from 176 to 125 GPa and a friction force from 250 to 180 mN, a decrease in speed wear from 8.15 × 10−4 to 1.79 × 10−4 mm3·N−1·m−1. The mechanism of grain refinement and the improvement of physical and mechanical properties is due to α → γ → α transformations occurring under conditions of VN dissolution in α-Fe and subsequent cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mechnik, V.A., Bondarenko, N.A., Kuzin, N.O., and Lyashenko, B.A., The role of structure formation in forming the physicomechanical properties of composites of the diamond-(Fe-Cu-Ni-Sn) system, J. Frict. Wear, 2016, vol. 37, no. 4, pp. 377–384.

    Google Scholar 

  2. Zaitsev, A.A., Sidorenko, D.A., Levashov, E.A., Kurbatkina, V.V., Rupasov, S.I., Andreev, V.A., and Sevast’yanov, P. V., Development and application of the Cu-Ni-Fe-Sn-based dispersion-hardened bond for cutting tools of superhard materials, J. Superhard Mater., 2012, vol. 34, no. 4, pp. 270–280.

    Google Scholar 

  3. Mechnyk, V.A. Diamond-Fe-Cu-Ni-Sn composite materials with predictable stable characteristics, Mater. Sci., 2013, vol. 48, no. 5, pp. 591–600.

    CAS  Google Scholar 

  4. Gevorkyan, E., Mechnik, V., Bondarenko, N., Vovk, R., Lytovchenko, S., Chishkala, V., and Melnik, O., Peculiarities of obtaining diamond-(Fe-Cu-Ni-Sn) composite materials by hot pressing, Functional Mater., 2017, vol. 24, no. 1, pp. 31–45.

    CAS  Google Scholar 

  5. Konstanty, J., Powder metallurgy diamond tools, UK, Oxford: Elsevier Science, 2005.

    Google Scholar 

  6. Dinaharan, I., Sathiskumar, R., and Murugan, N., Effect of ceramic particulate type on microstructure and properties of copper matrix composites synthesized by friction stir processing, J. Mater. Res. Technol., 2016, vol. 5, no. 4, pp. 302–316.

    CAS  Google Scholar 

  7. Shabani, M., Paydar, M.H., Zamiri, R., Goodarzi, M., and Moshksar, M.M., Microstructural and sliding wear behavior of SiC-particle reinforced copper matrix composites fabricated by sintering and sinter-forging processes, J. Mater. Res. Technol., 2016, vol. 5, no. 1, pp. 5–12.

    CAS  Google Scholar 

  8. Kolodnits’kyi, V.M. and Bagirov, O.E., On the structure formation of diamond-containing composites used in drilling and stone-working tools (A review), J. Superhard Mater., 2017, vol. 39, no. 1, pp. 1–17.

    Google Scholar 

  9. Mechnyk, V.A., Regularities of structure formation in diamond-Fe-Cu-Ni-Sn-CrB2 systems, Mater. Sci., 2013, vol. 49, no. 1, pp. 93–101.

    CAS  Google Scholar 

  10. Nitkiewicz, Z. and Swierzy, M., Tin influence on diamond-metal matrix hot pressed tools for stone cutting, J. Mater. Proc. Tech., 2006, vol. 175, nos. 1–3, pp. 306–315.

    CAS  Google Scholar 

  11. Mechnik, V.A., Production of diamond-(Fe-Cu-Ni-Sn) composites with high wear resistance, Powder Metall. Met. Ceram., 2014, vol. 52, nos. 9–10, pp. 577–587.

    CAS  Google Scholar 

  12. Mechnik, V.A., Effect of hot recompaction parameters on the structure and properties of diamond-(Fe-Cu-Ni-Sn-CrB2) composites, Powder Metall. Met. Ceram., 2014, vol. 52, nos. 11–12, pp. 709–721.

    CAS  Google Scholar 

  13. Sidorenko, D.A., Zaitsev, A.A., Kirichenko, A.N., Levashov, E. A., Kurbatkina, V.V., Loginov, P.A., Rupasov, S.I., and Andreev, V.A., Interaction of diamond grains with nanosized alloying agents in metal-matrix composites as studied by Raman spectroscopy, Diamond Relat. Mater., 2013, vol. 38, pp. 59–62.

    CAS  Google Scholar 

  14. Zaitsev, A.A., Sidorenko, D.A., Levashov, E.A., Kurbatkina, V.V., Andreev, V.A., Rupasov, S.I., and Sevast’yanov, P.V., Diamond tools in metal bonds dispersion-strengthened with nanosized particles for cutting highly reinforced concrete, J. Superhard Mater., 2010, vol. 32, no. 6, pp. 423–431.

    Google Scholar 

  15. Zhang, S., Bui, X.L., Jiang, J., and Li, X., Microstructure and tribological properties of magnetron sputtered nc-TiC/a-C nanocomposites, Surf. Coat. Tech., 2005, vol. 198, pp. 206–211.

    CAS  Google Scholar 

  16. Tay, B.K., Cheng, Y.H., Ding, X.Z., Lau, S.P., Shi, X., You, G.F., and Sheeja, D., Hard carbon nanocomposite films with low stress, Diamond Relat. Mater., 2001, vol. 10, pp. 1082–1087.

    CAS  Google Scholar 

  17. Musil, J., Tribological and mechanical properties of nanocrystalline-TiC/a-C nanocomposite thin films, J. Vac. Sci. Technol. A., 2010, vol. 28, no. 2, pp. 244–249.

    CAS  Google Scholar 

  18. Teer, D.G., New solid lubricant coatings, Wear, 2001, vol. 251, pp. 1068–1074.

    Google Scholar 

  19. Gleiter, H., Nanostructured materials: basic concepts and microstructure, Acta Mater., 2000, vol. 48, no. 1, pp. 1–29.

    CAS  Google Scholar 

  20. Gleiter, H., Materials with ultrafine microstructures: Retrospectives and perspectives, Nanostruct. Mater., 1992, vol. 1, no 1. pp. 1–19.

    CAS  Google Scholar 

  21. Gusev A.I. Nanomaterialy, nanostructury, nanotochnologii (Nanomaterials, Nanostructures, and Nanotechnologies), Moscow: Fizmatlit, 2009.

    Google Scholar 

  22. Pogrebnyak, A.D., Sobol’, O.V., Beresnev, V.M., Turbin, P.V., Dub, S.N., Kirik, G.V., and Dmitrenko, A.E., Features of the structural state and mechanical properties of ZrN and Zr(Ti)-Si-N coatings obtained by ion-plasma deposition technique, Tech. Phys. Lett., 2009, vol. 35, no. 10, art. 925.

    CAS  Google Scholar 

  23. Zhiwei, W.U., Zhang, J., Yi, C., and Liang, M., Effect of rare earth addition on microstrucural, mechanical and electrical characteristics of Cu-6%Fe microcomposites, J. Rare Earths, 2009, vol. 27, no. 1, pp. 87–91.

    Google Scholar 

  24. He, L. and Ma, E., Processing and microhardness of bulk Cu-Fe, Nanostruct. Mater., 1996, vol. 7, no. 3, pp. 327–339.

    CAS  Google Scholar 

  25. Akhmadeev, N.A., Kobelev, N.P., Mulyukov, R.R., Soifer, Ya.M., and Valiev, R.Z., The effect of heat treatment on the elastic and dissipative properties of copper with the submicrocrystalline structure, Acta Metall. Mater., 1993, vol. 41, no. 4, pp. 1041–1046.

    CAS  Google Scholar 

  26. Gusev, A.I., Effects of the nanocrystalline state in solids, Phys. Usp., 1998, vol. 41, pp. 49–76.

    Google Scholar 

  27. Robertson, A., Erb, U., and Palumbo, G., Practical applications for electrodeposited nanocrystalline materialsn, Nanostr. Mater., 1999, vol. 12, nos. 5–8, pp. 1035–1040.

    Google Scholar 

  28. Mechnik, V.A., Bondarenko, N.A., Dub, S.N., Kolodnitskyi, V.M., Nesterenko, Yu.V., Kuzin, N.O., Zakiev, I.M., and Gevorkyan, E.S., A study of microstructure of Fe-Cu-Ni-Sn and Fe-Cu-Ni-Sn-VN metal matrix for diamond containing composites, Mater. Charact., 2018, vol. 146, pp. 209–216.

    CAS  Google Scholar 

  29. Mechnik, V.A., Bondarenko, N.A., Kolodnitskyi, V.M., Zakiev, V.I., Zakiev, I.M., Storchak, M., Dub, S.N., and Kuzin, N.O., Physico-mechanical and tribological properties of Fe-Cu-Ni-Sn and Fe-Cu-Ni-Sn-VN nanocomposites obtained by powder metallurgy methods. Tribol. Ind., 2019, vol. 41, no. 2, pp. 188–198.

    Google Scholar 

  30. Rabinowicz, E., Friction and wear of materials, New York: Wiley, 1995.

    Google Scholar 

  31. Leyland, A. and Matthews, A., On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour, Wear, 2000, vol. 246, nos. 1–2, pp. 1–11.

    CAS  Google Scholar 

  32. Novikov, N.V., Voronkin, M.A., Dub, S.N., Lupich, I.N., Malogolovets, V.G., Maslyuk, B.A., and Podzyarey, G.A., Transition from polimer-like to diamond-like a-C:H films: Structure and mechanical properties, Diamond Relat. Mater., 1997, vol. 6, nos. 5–7, pp. 574–578.

    CAS  Google Scholar 

  33. Soldan, J. and Musil, J., Structure and mechanical properties of DC magnetron sputtered TiC/Cu films, Vacuum, 2006, vol. 81, no. 4, pp. 531–538.

    CAS  Google Scholar 

  34. Aleksandrov, V.A., Akekseenko, N.A., and Mechnik, V.A., Study of force and energy parameters in cutting granite with diamond disc saws, Sov. J. Superhard Mater., 1984, vol. 6, no. 6, pp. 46–52.

    Google Scholar 

  35. Aleksandrov, V.A., Zhukovsky, A.N., and Mechnik, V.A., Temperature field and wear of inhomogeneous diamond wheel at convective heat exchange, Trenie Iznos, 1994, vol. 15, no. 1, pp. 27–35.

    Google Scholar 

  36. Aleksandrov, V.A., Zhukovskij, A.N., and Mechnik, V.A., Temperature field and wear of heterogeneous diamond wheel under conditions of convectional heat transfer. Part 2, Trenie Iznos, 1994, vol. 15, no. 2, pp. 196–201.

    Google Scholar 

  37. Dutka, V.A., Kolodnitskij, V.M., Zabolotnyj, S.D., Sveshnikov, I.A., and Lukash, V.A., Simulation of the temperature level in rock destruction elements of drilling bits, Sverkhtverd. Mater., 2004, no. 2, pp. 66–73.

  38. Dutka, V. A., Kolodnitskij, V. M., Mel’nichuk, O. V., and Zabolotnyj, S.D., Mathematical model for thermal processes occurring in the interaction between rock destruction elements of drilling bits and rock mass, Sverkhtverd. Mater., 2005, no. 1, pp. 67–77.

  39. Zhukovskij, A.N., Majstrenko, A.L., Mechnik, V.A., and Bondarenko, N.A., The stress-strain state of the bonding around the diamond grain exposed to normal and tangent loading components. Part 1. Model, Trenie Iznos, 2002, vol. 23, no. 2, pp. 146–153.

    Google Scholar 

  40. Zhukovskij, A.N., Majstrenko, A.L., Mechnik, V.A., and Bondarenko, N.A., Stress-strain state of the matrix around the diamond grain exposed to the normal and tangent loading components. Part 2. Analysis, Trenie Iznos, 2002, vol. 23, no. 4, pp. 393–396.

    Google Scholar 

  41. Sveshnikov, I.A and Kolodnitsky, V.N., Optimization of the hard alloy cutter arrangement in the drilling bit body, Sverkhtverd. Mater., 2006, vol. 28, no. 4, pp. 70–75.

    Google Scholar 

  42. Lyakishev, N.P. and Alymov, M.I., Nanomaterials for construction purposes, Ross. Nanotekhnol., 2006, vol. 1, nos. 1–2, pp. 71–81.

    Google Scholar 

  43. Khasanov, O.L., Sokolov, V.M., Dvilis, E.S., and Pokholkov, Yu.L., Ul’trazvukovaya technologiya izgotovleniya konstruktsionnoi i funktsional’noi nanokeramiki (Ultrasound technology of structure and functional nanoceramics production), Perspectivnye Mater., 2002, no. 1, pp. 76–83.

  44. Bykov, Y., Gusev, S., Eremeev, A., Holoptsev, V., Malygin, N., Pivarunas, S., Sorokin, A., and Shurov, A., Sintering of nanophase oxide ceramics by using millimeter-wave radiation, Nanostr. Mater., 1995, vol. 6, nos. 5–8, pp. 855–858.

    Google Scholar 

  45. Kovneristy, Yu.K., Ob”emno-amortiziruyushchiesya metallicheskie splavy (Bulk Amorphizing Metal Alloys) Moscow: Nauka, 1999.

    Google Scholar 

  46. Pang, S.J., Zhang, T., Asami, K., and Inoue, A., Synthesis of Fe-Cr-Mo-C-B-P bulk metallic glasses with high corrosion resistance, Acta Mater., 2002, vol. 50, no. 3, pp. 489–497.

    CAS  Google Scholar 

  47. Saito, Y., Utsunomiya, H., Tsuji, N., and Sakai, T., Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process, Acta Mater., 1999, vol. 47, no. 2, pp. 579–583.

    CAS  Google Scholar 

  48. Korznikov, A.V., Ivanisenko, Yu.V., Laptionok, D.V., and Safarov, I.M., Influence of severe plastic deformation on structure and phase composition of carbon steel, Nanostr. Mater., 1994, vol. 4, no. 2, pp. 159–167.

    CAS  Google Scholar 

  49. Lyakishev N.P., Alymov M.I., and Dobatkin S.V., Ob”emnye nanomaterialy konstrukzionnogo naznzcheniya (Bulk nanomaterials for construction purposes), Metally, 2003, no. 3, pp. 3–16.

  50. Kodash, V.Y. and Gevorkian, E.S., USA Patent No. 6617271 B1, Publ. 09.09.2003.

  51. Kraus, W. and Nolze, G. POWDER CELL-A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns, J. Appl. Cryst., 1996, vol. 29, pp. 301–303.

    CAS  Google Scholar 

  52. Selected Powder Diffraction Data for Education and Training: Search Manual and Data Cards. Published by the International Centre for Diffraction Data, USA, 1988.

  53. Oliver, W.C. and Pharr, G.M., An improved for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 1992, vol. 7, no. 6, pp. 1564–1583.

    CAS  Google Scholar 

  54. Zakiev, V., Markovsky, A., Aznakayev, E., Zakiev, I., and Gursky, E., Micro-mechanical properties of bio-materials, Proc. SPIE 5959, Medical Imaging, 595916 (23 September 2005), Event: Congress on Optics and Optoelectronics, 2005, Warsaw, Poland, doi:https://doi.org/10.1117/12.628396.

  55. Firstov, S.A., Gorban, V.F., Krapivka, N.A., Pechkovskii, É.P., Danilenko, N.I., and Karpets, M.V., Mechanical properties of multicomponent titanium alloy, Strength Mater., 2010, vol. 42, no. 5, pp. 622–630.

    CAS  Google Scholar 

  56. Hao, Y.L., Li, S.J., Sun, S.Y., Zheng, C.Y., and Vang, R., Elactic deformation behaviour of Ti-24Nb-4Zn-7.9Sn for biomedical application, Acta Biomaterialia, 2007, vol. 3, no. 2, pp. 277–286.

    CAS  PubMed  Google Scholar 

  57. Hassani, S., Bielawski, M., Beres, W., Martinu, L., Balazinski, M., and Klemberg-Sapieha, J.E., Predictive tools for the design of erosion resistant coatings, Surf. Coat. Technol., 2008, vol. 203, nos. 3–4, pp. 204–210.

    CAS  Google Scholar 

  58. Bousser, E., Benkahoul, M., Martinu, L., and Klemberg-Sapieha, J.E., Effect of microstructure on the erosion resistance of Cr-Si-N coatings, Surf. Coat. Technol., 2008, vol. 203, nos. 5–7, pp. 776–778.

    CAS  Google Scholar 

Download references

Funding

The work was performed in the framework of state budget research topics in accordance with the coordination plans of the Ministry of Education and Science of Ukraine (state registration number of the project No. 0117U000391).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Mechnik or V. M. Kolodnitskyi.

Additional information

Russian Text © The Author(s), 2019, published in Sverkhtverdye Materially, 2019, Vol. 41, No. 6, pp. 26–43.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mechnik, V.A., Bondarenko, N.A., Kolodnitskyi, V.M. et al. Formation of Fe-Cu-Ni-Sn-VN Nanocrystalline Matrix by Vacuum Hot Pressing for Diamond-Containing Composite. Mechanical and Tribological Properties. J. Superhard Mater. 41, 388–401 (2019). https://doi.org/10.3103/S1063457619060030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457619060030

Keywords

Navigation