Skip to main content

Advertisement

Log in

A Hardy-type inequality and some spectral characterizations for the Dirac–Coulomb operator

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

We prove a sharp Hardy-type inequality for the Dirac operator. We exploit this inequality to obtain spectral properties of the Dirac operator perturbed with Hermitian matrix-valued potentials \({\mathbf {V}}\) of Coulomb type: we characterise its eigenvalues in terms of the Birman–Schwinger principle and we bound its discrete spectrum from below, showing that the ground-state energy is reached if and only if \({\mathbf {V}}\) verifies some rigidity conditions. In the particular case of an electrostatic potential, these imply that \({\mathbf {V}}\) is the Coulomb potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arai, M.: On essential selfadjointness, distinguished selfadjoint extension and essential spectrum of Dirac operators with matrix valued potentials. Publ. Res. Inst. Math. Sci. 19(1), 33–57 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arrizabalaga, N., Duoandikoetxea, J., Vega, L.: Self-adjoint extensions of Dirac operators with Coulomb type singularity. J. Math. Phys. 54(4), 041504 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arrizabalaga, N., Duoandikoetxea, J., Vega, L.: Erratum: “Self-adjoint extensions of Dirac operators with Coulomb type singularity” [J. Math. Phys. 54, 041504 (2013)]. Journal of Mathematical Physics 59, 7 (2018), 079902

  4. Burnap, C., Brysk, H., Zweifel, P.: Dirac Hamiltonian for strong Coulomb fields. Il Nuovo Cimento B (1971–1996) 64(2), 407–419 (1981)

    Article  MathSciNet  Google Scholar 

  5. B. Cassano B., Pizzichillo, F.: Boundary triples for the Dirac operator with Coulomb-type spherically symmetric perturbations. J. Math. Phys. 60, 041502 (2019). https://doi.org/10.1063/1.5063986

    Article  MathSciNet  MATH  Google Scholar 

  6. Cassano, B., Pizzichillo, F.: Self-adjoint extensions for the Dirac operator with Coulomb-type spherically symmetric potentials. Lett. Math. Phys. 108, 1–33 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dolbeault, J., Esteban, M.J., Loss, M., Vega, L.: An analytical proof of Hardy-like inequalities related to the Dirac operator. J. Funct. Anal. 216(1), 1–21 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dolbeault, J., Esteban, M.J., Séré, E.: On the eigenvalues of operators with gaps. Application to Dirac operators. J. Funct. Anal. 174(1), 208–226 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Esteban, M. J., Lewin, M., Séré, E.: Domains for Dirac–Coulomb min-max levels. Rev. Mat. Iberoam. 35(3) (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Esteban, M.J., Loss, M.: Self-adjointness for Dirac operators via Hardy–Dirac inequalities. J. Math. Phys. 48(11), 112107 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gallone, M., Michelangeli, A.: Discrete spectra for critical Dirac–Coulomb Hamiltonians. J. Math. Phys. 59, 062108 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gallone, M., Michelangeli, A.: Self-adjoint realisations of the Dirac–Coulomb Hamiltonian for heavy nuclei. Anal. Math. Phys. 9(1), 585–616 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gustafson, K., Rejto, P.: Some essentially self-adjoint Dirac operators with spherically symmetric potentials. Isr. J. Math. 14(1), 63–75 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hardy, G.H.: Note on a theorem of Hilbert. Math. Z. 6(3–4), 314–317 (1920)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hogreve, H.: The overcritical Dirac–Coulomb operator. J. Phys. A Math. Theor. 46(2), 025301 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kato, T.: Fundamental properties of Hamiltonian operators of Schrödinger type. Trans. Am. Math. Soc. 70(2), 195–211 (1951)

    MATH  Google Scholar 

  17. Kato, T.: Holomorphic families of Dirac operators. Math. Z. 183(3), 399–406 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kato, T.: Perturbation Theory for Linear Operators, vol. 132. Springer, Berlin (2013)

    Google Scholar 

  19. Klaus, M.: On the point spectrum of Dirac operators. Helv. Phys. Acta 53(3), 453–462 (1981)

    MathSciNet  Google Scholar 

  20. Klaus, M., Wüst, R.: Characterization and uniqueness of distinguished self-adjoint extensions of Dirac operators. Commun. Math. Phys. 64(2), 171–176 (1979)

    Article  MATH  Google Scholar 

  21. Kufner, A., Maligranda, L., Persson, L.-E.: The prehistory of the Hardy inequality. Am. Math. Mon. 113(8), 715–732 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nenciu, G.: Self-adjointness and invariance of the essential spectrum for Dirac operators defined as quadratic forms. Commun. Math. Phys. 48(3), 235–247 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rellich, F., Jörgens, K.: Eigenwerttheoriepartieller Differentialgleichungen: Vorlesung, gehalten an der Universität Göttingen. Mathematisches Institut der Universität Göttingen, Göttingen (1953)

    Google Scholar 

  24. Schmincke, U.-W.: Distinguished selfadjoint extensions of Dirac operators. Math. Z. 129(4), 335–349 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schmincke, U.-W.: Essential selfadjointness of Dirac operators with a strongly singular potential. Math. Z. 126(1), 71–81 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  26. Thaller, B.: The Dirac Equation, vol. 31. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  27. Voronov, B.L., Gitman, D.M., Tyutin, I.V.: The Dirac Hamiltonian with a superstrong Coulomb field. Theor. Math. Phys. 150(1), 34–72 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Weidmann, J.: Oszillationsmethoden für systeme gewöhnlicher Differentialgleichungen. Math. Z. 119(4), 349–373 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wüst, R.: Distinguished self-adjoint extensions of Dirac operators constructed by means of cut-off potentials. Math. Z. 141(1), 93–98 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xia, J.: On the contribution of the Coulomb singularity of arbitrary charge to the Dirac Hamiltonian. Trans. Am. Math. Soc. 351(5), 1989–2023 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by ERCEA Advanced Grant 2014 669689 - HADE, by the MINECO project MTM2014-53850-P, by Basque Government project IT-641-13 and also by the Basque Government through the BERC 2018–2021 program and by Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa excellence accreditation SEV-2017-0718. The first author also acknowledges the Istituto Italiano di Alta Matematica “F. Severi” and the Czech Science Foundation (GAČR) within the project 17-01706S. The second author is also supported by the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation program (grant agreement MDFT No725528 of Mathieu Lewin).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Pizzichillo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Partial wave subspaces

Appendix A. Partial wave subspaces

In this appendix, we recall the partial wave subspaces associated to the Dirac equation. We sketch here this topic, referring to [26, Sect. 4.6] for further details.

Let \(Y^l_n\) be the spherical harmonics. They are defined for \(n = 0, 1, 2, \ldots \), and \(l =-n,-n + 1,\ldots , n,\) and they satisfy \(\Delta _{\mathbb {S}^2} Y^l_n= n(n + 1)Y^l_n\), where \(\Delta _{\mathbb {S}^2}\) denotes the usual spherical Laplacian. Moreover, \(Y^l_n\) form a complete orthonormal set in \(L^2(\mathbb {S}^2)\). For \(j = 1/2, 3/2, 5/2, \ldots , \) and \(m_j = -j,-j + 1, \ldots , j\), set

$$\begin{aligned} \begin{aligned} \psi ^{m_j}_{j-1/2}&:= \frac{1}{\sqrt{2j}} \left( \begin{array}{c} \sqrt{j+m_j}\,Y^{m_j-1/2}_{j-1/2}\\ \sqrt{j-m_j}\,Y^{m_j+1/2}_{j-1/2}\\ \end{array}\right) ,\\ \psi ^{m_j}_{j+1/2}&:=\frac{1}{\sqrt{2j+2}} \left( \begin{array}{c} \sqrt{j+1-m_j}\,Y^{m_j-1/2}_{j+1/2}\\ -\sqrt{j+1+m_j}\,Y^{m_j+1/2}_{j+1/2}\\ \end{array}\right) ; \end{aligned} \end{aligned}$$

then \(\psi ^{m_j}_{j\pm 1/2}\) form a complete orthonormal set in \(L^2(\mathbb {S}^2)^2\). For \(k_j:=\pm (j+1/2)\) we set

$$\begin{aligned} \Phi ^+_{m_j,\pm (j+1/2)}:= \left( \begin{array}{c} i\,\quad \psi ^{m_j}_{j\pm 1/2}\\ 0 \end{array}\right) , \quad \Phi ^-_{m_j,\pm (j+1/2)}:= \left( \begin{array}{c} 0\\ \psi ^{m_j}_{j\mp 1/2} \end{array}\right) . \end{aligned}$$

Then, the set \(\lbrace \Phi ^+_{m_j,k_j},\Phi ^-_{m_j,k_j} \rbrace _{j,k_j,m_j}\) is a complete orthonormal basis of \(L^2(\mathbb {S}^2)^4\) and

$$\begin{aligned} (1+2{{\mathbf {S}}}\cdot L)\Phi _{m_j,k_j}=-k_j\beta \Phi _{m_j,k_j}, \end{aligned}$$
(A.1)

where the spin angular momentum operator\({{\mathbf {S}}}\) and the orbital angular momentumL are defined as

$$\begin{aligned} {\mathbf {S}}= \frac{1}{2}\left( \begin{array}{cc} \sigma &{} 0\\ 0 &{} \sigma \end{array} \right) \quad \text {and}\quad L:=-ix\wedge \nabla . \end{aligned}$$
(A.2)

So, we can write

$$\begin{aligned} \psi (x)= \sum _{j,k_j,m_j} \frac{1}{r}\left( f^+_{m_j,k_j}(r)\Phi ^+_{m_j,k_j}({{\hat{x}}})+ f^-_{m_j,k_j}(r)\Phi ^-_{m_j,k_j}({{\hat{x}}})\right) \end{aligned}$$
(A.3)

and, by definition,

$$\begin{aligned} \int _{{{{\mathbb {R}}}}^3}|\psi |^2\,dx= \sum _{j,k_j,m_j} \int _0^{+\infty }|f^+_{m_j,k_j}(r)|^2+ |f^-_{m_j,k_j}(r)|^2\,dr. \end{aligned}$$

Thanks to [26, Eq. 4.109] and (A.3), we have that

$$\begin{aligned} \begin{aligned} \int _{{{{\mathbb {R}}}}^3} \frac{|\psi |^2}{|x|}\,dx&= \sum _{j,k_j,m_j} \int _0^{+\infty } \frac{1}{r} \left( |f^+_{m_j,k_j}(r)|^2+ |f^-_{m_j,k_j}(r)|^2\right) dr,\\ \int _{{{{\mathbb {R}}}}^3} \frac{|(1+2{{\mathbf {S}}}\cdot L)\psi |^2}{|x|}\,dx&= \sum _{j,k_j,m_j} \int _0^{+\infty } \frac{k_j^2}{r} \left( |f^+_{m_j,k_j}(r)|^2+ |f^-_{m_j,k_j}(r)|^2\right) dr. \end{aligned} \end{aligned}$$
(A.4)

From (A.4), we directly deduce that

$$\begin{aligned} \int _{{{{\mathbb {R}}}}^3} \frac{|\psi |^2}{|x|}\,dx \le \int _{{{{\mathbb {R}}}}^3} \frac{|(1+2{{\mathbf {S}}}\cdot L)\psi |^2}{|x|}\,dx, \end{aligned}$$
(A.5)

and that (A.5) is attained if and only if \(f_{m_j,k_j}^\pm =0\) for \(k_j\ne \pm 1\), or equivalently \(j\ne 1/2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cassano, B., Pizzichillo, F. & Vega, L. A Hardy-type inequality and some spectral characterizations for the Dirac–Coulomb operator. Rev Mat Complut 33, 1–18 (2020). https://doi.org/10.1007/s13163-019-00311-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-019-00311-4

Keywords

Mathematics Subject Classification

Navigation