Skip to main content
Log in

Fine structure of the homomorphisms of the lattice of uniformly continuous functions on the line

  • Published:
Positivity Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We provide a representation of the homomorphisms \(U\longrightarrow {\mathbb {R}}\), where U is the lattice of all uniformly continuous functions on the line The resulting picture is sharp enough to describe the fine topological structure of the space of such homomorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Akaike, Y., Chinen, N., Tomoyasu, K.: The Smirnov remainders of uniformly locally connected proper metric spaces. Top. Appl. 158(1), 69–83 (2011)

    Article  MathSciNet  Google Scholar 

  2. Akça, İ., Koçak, M.: Non-homogeneity of the remainder \(s{\mathbb{R}}\backslash {\mathbb{R}}\) of the Samuel compactification of \({\mathbb{R}}\). Top. Appl. 149, 239–242 (2005)

    Article  Google Scholar 

  3. Benyamini, Y., Lindenstrauss, J.: Geometric Nonlinear Functional Analysis, vol. 48. American Mathematical Society Colloquium Publications, Providence (2000)

    MATH  Google Scholar 

  4. Cabello Sánchez, F., Cabello Sánchez, J.: Lattices of uniformly continuous functions. Top. Appl. 160, 50–55 (2013)

    Article  MathSciNet  Google Scholar 

  5. Cabello Sánchez, F., Cabello Sánchez, J.: Quiz your maths: do the uniformly continuous functions on the line form a ring? Proc. Am. Math. Soc. (to appear)

  6. Garrido, M.I., Jaramillo, J.Á.: A Banach–Stone theorem for uniformly continuous functions. Monatsh. Math. 131, 189–192 (2000)

    Article  MathSciNet  Google Scholar 

  7. Garrido, M.I., Meroño, A.S.: The Samuel realcompactification of a metric space. J. Math. Anal. Appl. 456(2), 1013–1039 (2017)

    Article  MathSciNet  Google Scholar 

  8. Hušek, M.: Lattices of uniformly continuous functions determine sublattices of bounded functions. Top. Appl. 182, 71–76 (2015)

    Article  MathSciNet  Google Scholar 

  9. Hušek, M., Pulgarín, A.: Banach-Stone-like theorems for lattices of uniformly continuous functions. Quaest. Math. 35, 417–430 (2012)

    Article  MathSciNet  Google Scholar 

  10. Kunisada, R.: Density measures and additive property. J. Number Theory 176, 184–203 (2017)

    Article  MathSciNet  Google Scholar 

  11. Samuel, P.: Ultrafilters and compactifications of uniform spaces. Trans. Am. Math. Soc. 64, 100–132 (1948)

    Article  MathSciNet  Google Scholar 

  12. Shirota, T.: A generalization of a theorem of I. Kaplansky. Osaka Math. J. 4, 121–132 (1952)

    MathSciNet  MATH  Google Scholar 

  13. Tanaka, J.-I.: Flows in fibers. Trans. Am. Math. Soc. 343, 77–804 (1994)

    Article  MathSciNet  Google Scholar 

  14. Weaver, N.: Lipschitz Algebras. World Scientific, Singapore (1999)

    Book  Google Scholar 

  15. Willard, S.: General Topology. Addison-Wesley, Reading (1970)

    MATH  Google Scholar 

  16. Woods, R.G.: The minimum uniform compactification of a metric space. Fundam. Math. 147, 39–59 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félix Cabello Sánchez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported in part by DGICYT project MTM20167-6958-C2-1-P (Spain) and Consejería de Educación y Empleo, Junta de Extremadura programs GR-15152 and IB-16056.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabello Sánchez, F. Fine structure of the homomorphisms of the lattice of uniformly continuous functions on the line. Positivity 24, 415–426 (2020). https://doi.org/10.1007/s11117-019-00686-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-019-00686-0

Keywords

Mathematics Subject Classification

Navigation